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ABSTRACT

THE MEASUREMENT (58.4–164.0 NM) AND ANALYSIS (40.0–600.0 NM)

OF THE

ATOMIC SCATTERING FACTORS OF DIAMOND AND GRAPHITE

Matthew B. Squires

Department of Physics and Astronomy

Master of Science

I have built a variable angle reflectometer capable of measuring absolute reflectance between 2.5◦

and 85◦ grazing incidence for use in the extreme ultraviolet, and it is possible to perform surface

scans over a sample 5 cm square. The measurement system was constructed to be modular for future

applications. The data collection and analysis is automated using LabVIEW and data acquisitions

hardware. The data is corrected for time variations in the intensity of the plasma source.

The optical constants of fused industrial diamond and highly oriented pyrolytic graphite (HOPG)

have been measured using the variable angle reflectometer. Qualitatively the measured values rea-

sonably agree with previously published data for diamond and graphite. However, the measured

data points are sparse and have only been measured at bright spectral lines of H, He, and N. The

small size and unknown quality of the graphite and diamond made it difficult to quantitatively

compare the measured optical properties to other published data.





I have analyzed the atomic scattering factors (ASF) of diamond and graphite, calculated from the

n and k values reported in the Handbook of Optical Constants I & II (ed. E. Palik), by calculating

the relative difference between the ASF of diamond and graphite. The relative error in f1 at 8 eV is

about 100% and between 15.5–25 eV it is about 25%. This large of a difference at 25 eV is greater

than expected because the nearest resonance in the carbon spectrum is at 8 eV. At 30 eV this

difference is about 10 times greater than the difference between the energies of the single and double

bonds in carbon. The mechanisms that determine the optical properties of carbon are significantly

affected by the crystal structure of the bulk carbon. There is a relative difference of 100% between

the f2 values about 8 eV. This is due to the near zero absorption of diamond below its band gap.

At energies above 15.5 eV the average error is about 25%. This analysis shows that, at least for

carbon, the energies of the valence electrons significantly affects the electronic structure at energies

several times that of the binding energies.
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D.13 VAR data and confidence intervals for diamond at 1216 Å . . . . . . . . . . . . . . . 118
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Chapter 1

Background and Introduction

Between 1997 and 2001 the EUV research group at BYU has worked on coating surfaces for two space

flight applications [1, 2]. This included optimizing high and low reflectance at specific wavelengths

and angles. There were several issues that hampered efforts in both projects.

Difficulty making measurements in the EUV slowed both projects. EUV light is strongly absorbed

by air so any measurements must be made in a vacuum. This is difficult because the materials

and instruments used to make the measurement must be made from vacuum compatible materials.

In situ alignment and pump down time are other difficulties when working in the EUV. From

lessons learned during the completion of the first contract, a variable angle reflectometer (VAR) was

designed, built, and successfully used to complete the second contract. The design and construction

of the VAR are discussed in this thesis. Measurements of industrial diamond and graphite (HOPG)

made using the VAR will be compared to previous measurements of diamond and graphite.

The other main difficulty in completing the contracts was uncertainty in the optical constants of the

materials that were used to make the surfaces at extreme ultraviolet (EUV) and vacuum ultraviolet

(VUV) wavelengths. In all cases there was disagreement between the published optical constants and

the measured optical constants of the materials. In some cases the uncertainty may have been due

to an unknown amount of water absorbed in the films after they were removed from the deposition

chamber. Other films grew oxides when they were exposed to air. In some cases the oxides made

little difference to the final design and performance of the mirror. In other cases the oxide was the

only reason why the films met design specifications [3]. In all cases it was difficult to determine

which optical constants were valid for an application, and then if the material absorbed water or

oxygen, how to modify the published optical constants to match the observed optical properties.

At lower energies (visible light) and at higher energies (x ray) there are well defined theories to

predict the optical properties of a material. This thesis will not entirely ignore low energy theories

(i.e. Drude theory) but will concentrate on the theory of atomic scattering factors (ASF). ASF are

successful at predicting the optical properties of materials in the x-ray portion of the electromagnetic

spectrum, because ASF are independent of the density of the material. This allows the optical

constants of a material of different densities and compositions to be predicted at x-ray wavelengths.

1



2 CHAPTER 1. BACKGROUND AND INTRODUCTION

ASF theory does break down around absorption edges and in the EUV and visible. This is expected

because the theory makes the assumption that the electrons are independent inside the atom. In

the EUV and visible this assumption no longer holds because the energy of EUV and visible light

is on the order of the energy of the bonds between atoms. Literature puts the lowest energy where

ASF are successful at predicting optical constants at about 50 eV [4].

But atomic scattering theory is very useful at predicting the optical constants of compounds in

the x-ray portion of the spectrum. If atomic scattering theory were used to predict the unknown

optical constants of a material in the EUV what errors would be associated with the predicted

optical constants? The error can be determined by calculating the relative error between the atomic

scattering factors of diamond and graphite. Because diamond and graphite are only different phases

of carbon, differing only in bonding, sp3 versus sp2, they should have the same atomic scattering

factors independent of the density when the crystal bonding is unimportant. Any difference in their

atomic scattering factors will show where and to what extent using ASF will introduce errors in the

calculated optical constants in the EUV.

This thesis will contain two main points: 1) the design, construction, and measurements of the

variable angle reflectometer and 2) analysis of the atomic scattering factors for diamond and graphite.

The optical constants of industrial diamond and graphite (HOPG) measured using the variable angle

reflectometer will not be used in the analysis because previous data sets were more extensive and

reliable given that there was not enough time to measure the optical properties of diamond and

graphite at more than a few wavelengths. This data is included, in part, as a test of the VAR. The

analysis of the usefulness of ASF in the EUV will be evaluated using values published in References

[5, 6].



Chapter 2

Experimental Setup

The EUV measurements are made using a variable angle reflectometer (VAR) that was designed and

built with the help of Cynthia Mills. The operation of the VAR is automated using programs written

in LabVIEW. The VAR is connected to a monochromator that is used to isolate one wavelength of

light for measurement and a hollow cathode plasma lamp that is used to create the EUV light for

the measurements. Figure 2.1 shows the relative sizes and positions of the VAR, monochromator,

hollow cathode, and electrical components.

2.1 Hollow Cathode

The light source for all the measurements was a McPherson model 692 vacuum ultraviolet hollow

cathode light source. It is also called a plasma lamp. Light is created by flowing gas into the cathode

that is held around -700 VDC. A plasma is formed in the hollow cathode and the hot gas radiates

spectral lines that are specific to the gas. For operating instructions see Appendix E and Reference

[7].

Some sputtering occurs inside the hollow cathode because of the plasma. For lighter gases (hydrogen

and helium) this is not a serious issue, but heavier gases (argon and neon) will significantly erode

the interior walls of the hollow cathode. This occurred to the point, at one time in the past, that

the cooling water eroded through the walls of the hollow cathode and flooded the monochromator!

The majority of the erosion occurred in the tube where the gas flows into the cathode. All in situ

alignment and testing were performed using the H Lyman α line at 1216 Å, because it was a very

bright line, and there is a low sputtering rate.

Because the plasma was temporally unstable it was necessary to record the time variations of the

intensity of the source. The gas pressure in the cathode affected the stability of the plasma lamp,

but the optimal pressure changed from day to day. The gas pressure also influenced the intensity of

the line emission [7]. The voltage was increased to 1 kV for very weak spectral lines. When running

at high voltages it was important to make sure the ballast resistors were adequately cooled.

3
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2.2 Monochromator

A McPherson model 225 vacuum ultraviolet (VUV) monochromator is used to separate and isolate

one wavelength of light from other wavelengths that are created in the hollow cathode. The working

principle behind function of the monochromator is similar to that of a glass prism. White light goes

into the prism where the colors separate and come out at different positions. The process by which

the light is separated is different but the light separating principle is the same. There are three

essential parts for the operation of the monochromator. The entrance slit, the grating, and the exit

slit.

The entrance slit is used to define the beam coming from the plasma lamp. The horizontal width is

changed by turning a micrometer below the exit flange. The vertical width is changed by loosening

the screws that hold the slits and moving the slits by hand. Only the horizontal width can be changed

while the system is under vacuum. Changing the vertical width requires removing the hollow cathode

(or VAR.) Practically it is used to adjust the amount of light entering the monochromator. Because

a plasma is used for a light source opening the slits will also affect the distribution of light that

enters the monochromator. Table 2.1 shows the horizontal widths of the entrance and exit slits used

for measurements in this thesis.

λ (Å) Entrance Slit (µm) Exit Slit (µm)
584 250 250
1025 200 150
1084 175 175
1134 200 200
1164 200 200
1199 200 200
1216 200 150
1640 350 250

Table 2.1: Summary of horizontal slit widths used for different wavelengths of light.

The gratings used in the monochromator are concave reflection gratings coated with platinum or

magnesium fluoride. The magnesium fluoride coated grating is used for wavelengths between 450 to

1600 Å, and the platinum coated grating is used for wavelengths from 250 to 1200 Å. The magnesium

fluoride coated grating was exclusively used for all measurements because there was not enough time

to clean the platinum grating which had been previously damaged by water spots.

The light that strikes the grating is comprised of several wavelengths of light that depend on the gas

that is being used in the hollow cathode. The grating disperses, or reflects, each of these wavelengths

at a different angle. By rotating the grating different wavelengths of light will focus on the exit slits.

The basic equation for light reflecting off a grating is

sin(θ) + sin(φ) =
nλ

d
(2.1)

where λ is the wavelength of interest, d is the distance between grooves on the grating, φ is the angle
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the light strikes the grating, and θ is the angle the light reflects off the surface of the grating. For a

rigorous treatment of diffraction see Reference [8].

After the light has been diffracted it passes through the exit slits. The position of the slits only

allows a narrow band of wavelengths of light to pass through because the exit slit is held at a fixed

angle of 7.5◦ to the diffraction grating. The width of the exit slit determines the spectral purity of

the monochromator. The wider the slits the more angles (wavelengths) will be able to pass through

the slits. The width of the exit slit is typically not a problem because most of the light coming from

the hollow cathode is spectral radiation at discrete wavelengths. If a continuous source was used it

would be important to keep the exit slit small to limit the number of wavelengths that enter the

chamber. Practically, as with the entrance slits, the exit slit is used to determine the intensity of

the light entering the measurement chamber. In addition the larger the slits the more the intensity

variations of the plasma will be blurred. Wider slits may also allow a larger amount of scattered

light to exit into the measurement chamber.

2.3 Variable Angle Reflectometer

The variable angle reflectometer (VAR) was primarily built to measure specular reflectance at mul-

tiple wavelengths or θ/2θ reflectance scans. It was also designed to be used for future needs, such

as non-specular scattering, polarimetry, in situ deposition, and surface scans. The chamber is large

enough to accommodate other equipment and there are enough free ports to add feedthroughs or

other external equipment. The VAR was built with several short and long term goals in mind:

• Perform automated θ/2θ scans between 5 and 85 degrees

• Rotate the detector and sample independently

• Move the sample out of the beam to make absolute reflectance measurements

• Scan the surface of the sample to verify uniformity

• Perform in situ deposition and measurements

• Interlock to transfer samples into the octagonal chamber (O-chamber)

• Polarimetry

• Transmission measurements

• Mount different types of detectors

• Be easily alignable

Not all of these goals have been realized by this writing but any of the goals can be implemented in

the future with relative ease.
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Figure 2.2: Schematic drawing of variable angle reflectometer, including internal and external hard-
ware.
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This section will focus on the design of the VAR and the principles and basics of how the VAR is

aligned. As mentioned previously the VAR was designed to be flexible for future needs. To facilitate

future research few parts are permanently fixed to the octagonal vacuum chamber, and as reasonable

many elements of the VAR were designed so they could be adjusted to fit future needs.

Making accurate θ/2θ measurements requires accurate alignment of the sample, detector, and light

source [9]. An overview of the steps and alignment method is explained in the following sections.

The full alignment procedure may be found in Appendix E.

2.3.1 Vacuum Chamber

The octagonal vacuum chamber (O-chamber) is connected to the monochromator by a stainless steel

bellows that is welded to stainless steel flanges that correspond to the ports on the monochromator

and octagonal chamber. The original nipple was a little too short so there was not sufficient room

between the octagonal chamber and the hollow cathode. A 1/2 inch spacer plate was machined from

aluminum that allowed the chamber to be properly aligned with adequate room around the hollow

cathode. A mechanical lift was built by Greg Harris to lift the lid off the O-chamber. The chamber

should be vented before opening the lid because the lift is strong enough to lift the entire O-chamber.

At best, that would change the alignment and, at worst, break the bellows or the hollow cathode.

All parts inside the O-chamber at mounted on a 1/2 inch aluminum base plate that has holes drilled

and tapped on a one inch square grid. This base plate is very convenient because it allows many

different pieces of hardware to be mounted to fixed positions in the O-chamber. The rotation stages,

rotational stepper motors, springs, and pinhole are all mounted to the base plate. The base may

be positioned inside the chamber by adjusting four lateral pushers. The level or tilt of the base is

adjusted by loosening or tightening four set screws mounted in the base plate. The position of the

plate may be locked into place inside the chamber by equally tightening all the internal pushers

against the walls of the O-chamber.

An electrical feedthrough is used to pass electrical signals to the motors, power the detector, and

pass the detector signal out of the O-chamber. This feedthrough was constructed at BYU by Jason

Flint, a student, and Joseph Young. It was made from a hermetically sealed military feedthrough

that surprisingly held a vacuum down to 10−4 torr. However, this pressure was not acceptable for

the operation of the detector. The pins on the vacuum side were extended and TorrSeal, a vacuum

compatible epoxy, was applied to fill any remaining leaks. More details about the feedthrough

construction may be found in Appendix C and Reference [10].

The vacuum pressure is measured by a Varian cold cathode gauge that is mounted on the chamber

lid. The cold cathode gauge has set points that are used as a safety interlock for the channeltron

detector so it is always operated at the correct pressure.
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2.3.2 Exterior Alignment Hardware

The chamber is supported on a table that is used to adjust the height, angle, and lateral position

of the O-chamber relative to the monochromator. The height and level of the chamber are adjusted

by individually changing the height of the table legs. A carpenter’s level is used to level the table

by checking the level of the table along orthogonal directions. If the table is level the floor of the

chamber should also be level. That was checked the first time the O-chamber was leveled before the

base was installed in the chamber. The level of the O-chamber is important, but the level of the

optical base in the VAR is much more important than the level of the table or O-chamber.

The lateral position of the VAR is adjusted by loosening and tightening screws in opposite lateral

alignment blocks (see Figure 2.2). The angular alignment is changed by using the angular alignment

blocks. The angle is changed by loosening and tightening the four screws in the angular alignment

blocks. Changing the lateral alignment will change the angular alignment and visa versa. A good

alignment may take several iterations of lateral and angular alignments.

2.3.3 Alignment of Monochromator and Measurement Chamber

Set up a laser on an isolated table with the table the VAR chamber sits on moved out of the way.

The monochromator grating should be moved to zero angstroms so all zero order reflections may

come out of the exit slit. Align the laser so it passes through the exit slits, reflects off the center of

the grating, and comes out the entrance slits. If the laser does not come out vertically centered, the

grating may need to be aligned. Consult the McPherson manuals for instructions on aligning the

grating. The laser is now the reference for all alignments.

Center the VAR between the lateral and rotational alignment blocks by eye. Move the table and

VAR into the beam of the laser so the laser passes through the cross hairs and the retroreflection

from the cross hairs roughly returns to the laser. Bolt the bellows onto the monochromator. If

the vertical alignment is off adjust the height of the table legs until the VAR is aligned in the

vertical direction. Using the lateral and rotational alignment blocks align the VAR in the horizontal

direction.

It is very important that the laser exactly retroreflects off the cross hairs because the cross hairs

become the reference for major and minor alignments in the chamber. The laser can now be attached

to the VAR table for easier use. A full alignment procedure is found in Appendix E.

2.3.4 Internal Alignment using Interior Alignment Hardware

As a general practice the interior hardware should be aligned or realigned after the O-chamber has

been aligned with the monochromator. The interior hardware can be aligned with the O-chamber

independent of the monochromator, but if the table is moved it may change the alignment of the

interior hardware. There are two parts to aligning the interior hardware. Leveling the optical base

and aligning the center of rotation with the laser.
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The optical base is leveled by adjusting four set screws that are screwed in the optical base in front

of the interior alignment blocks. If the base if has not be previously leveled use a carpenters level

to roughly level the base. This angle of the base is changed by raising and lowering opposite set

screws. The base can be leveled in any direction. The monochromator may not be perfectly level,

so using a level is only the first step in aligning the VAR.

A laser is used to fine tune the level of the base. The laser is aligned perpendicular to the cross

hairs on the back of the chamber. This defines what will be the path of light coming from the

monochromator. Put a mirror in the sample stage. If the laser is able to reflect off the mirror and

return along the same path, the optical base is aligned with the laser and the cross hairs. If the laser

does not return along the same path, the optical base may be aligned by adjusting the set screws.

After the base has been leveled check to make sure the mirror is properly aligned with the detector.

Swing the detector around until the laser is shining directly into the opening (This may require

removing the rotational motors to get the needed range of motion.) Move the mirror into the beam

and rotate the mirror and detector so the laser shines into the detector. The laser should hit the

same spot on the detector both times. If it doesn’t the mirror angle can be adjusted by loosening

and tightening the screws on the base of the Z translation stage. Similar to other alignments this

alignment may need to be refined using light from the monochromator.

Next align the center of rotation with a plumb bob. The laser is aligned with cross hairs and a plum

bob is hung inside the chamber with the laser centered on the string. The optical base can be moved

laterally using the interior alignment blocks until the center of rotation is directly beneath the plum

bob. The mirror can also be used to align the center of rotation. Adjust the mirror so the laser is

just grazing the surface of the mirror. Rotate the mirror 180◦ (The length of the cables that are

connected to the XYZ stage may need to be increased). The laser should also just graze the surface

of the mirror after it was rotated.

The position of the optical base is “locked” into place by tightening all of the interior alignment

blocks into the walls of the O-chamber. Some care needs to be taken to preserve the alignment when

locking the optical base into place. It is important to have the internal alignment blocks push directly

into the walls without rotating. Any rotation in the blocks while pushing against the wall will change

the level of the optical base. The original interior alignment blocks were screws with brass buttons

on the ends to try to eliminate rotation due to friction. The brass buttons did not prevent the base

from rotating and were redesigned. Even though the current blocks are slightly more complicated

it is necessary for the interior alignment blocks to push on the wall without rotating.

2.3.5 Shaping the Beam with a pinhole

The beam coming from the monochromator is divergent with a cone angle of about 3o. This causes

several problems: 1) the beam will reflect off the mirror and into the detector even when the mirror

is moved 15 mm out of the beam, 2) this also limits the smallest angle that may be used for analysis,

and 3) there is more scattered light in the chamber. To solve these problems a pinhole is placed in

the path of the light to narrow the beam. Using a pinhole also has the benefit of being a second
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Copper
Foil

Figure 2.3: Schematic of pinhole redefining the beam from the monochromator.

reference point for the laser in the O-chamber. Because the size of the hole is much larger than EUV

wavelengths it is assumed diffraction is a small effect and is ignored.

The pinhole is aligned using a small translation stage mounted to the baseplate. The laser is centered

on the pinhole by monitoring the intensity of the laser coming through the pinhole. The vertical and

lateral position can be adjusted until the intensity is maximized. The position of the pinhole will

determine what part of the beam is sampled1. If the pinhole is not aligned there will be a shoulder

on one side of the source beam profile. This can slightly be seen on the left side of the most intense

beam in Figure 2.4.

It may be asked if the pinhole will change the width of the beam if the widths of the entrance and

exit slits are changed. If the width of the beam profile changes at full width half max (FWHM) or

at full width full max (FWFM) then the pinhole is changing the beam profile in a non-reproducible

way. Figure 2.5 shows two sets of data that are normalized to unity by dividing by the intensity at

the peak of each curve. Despite different slit sizes and source intensities (see Figure 2.4) the two

curves are identical. The beam width at FWHM is about 1.5◦. Figure 2.5 also shows the signal to

off-peak noise ratio is about 1 part in 103. It can also be seen that the curve that corresponds to

the lower intensity is slightly more noisy, as would be expected if the beam was ruled by Gaussian

or Poisson statistics.

2.3.6 Rotation Stages

To get the θ/2θ sample detector movement and independent sample detector movement there needed

to two distinct rotation stages that could be moved independent of all other parts. Cynthia Mills

1The position of the pinhole may be used to aim the path of the light in the chamber. I know this should work
but I have not explored what errors, if any, it introduces.
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Figure 2.6: Schematic of CEM operation showing electron avalanche triggered by incoming photon
[11].

looked for commercial rotation stages, but could not find rotation stages that would be able to rotate

180◦ with no coarse adjustments and would meet the space constraints of the chamber. Because

there were no commercial parts available, Cynthia and Wes Lifferth designed the rotation stages.

Then Wes machined the two rotational parts. The mechanical drawing for the rotation stages may

be found in Appendix C.

2.3.7 Translation Stages

An XYZ translation stage was built to make it possible to move the sample out of the beam path,

and scan the beam across the sample to check for uniformity. The stage was built by Cynthia Mills

using a design that Dr. Peatross had previously used. He gave us a part that attaches the Z stage

to the X and Y stages. The stages are moved by stepper motors purchased from Haydon Switch and

Instrument. The carriages were made by Techno-Isel Linear Motion Components. The carriages use

ball bearings to reduce the friction while keeping the carriage fairly stable. These ball bearings can

pop out when the carriage is being placed on the rail. Work over a cloth or towel so if a bearing

does escape it is not lost. The bearings can be pushed back into their original position very easily.

There was also a little wobble in the translation stages. This wobble was removed by attaching a

spring from the top of the Z stage to the bottom of the X stage.
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2.3.8 Channeltron Detector

A model MD-501 Amptecktron made by Amptek Inc. was used to measure the intensity of the

light. The MD-501 uses a channel electron multiplier (CEM) to detect light. The CEM works by

creating an electron avalanche of 107 electrons for every one photon. The avalanche is initiated when

a photon strikes the opening of the CEM. If the photon has enough energy it will eject one or more

electrons from the surface of the CEM. That electron is accelerated by a high voltage to the other

side of the CEM where it ejects more electrons that cascade inside the CEM until they exit and are

detected (see Figure 2.6).

The CEM is integrated in a package that contains all the necessary electronics to supply the high

voltage that drives the CEM, then amplifies, and shapes the output signal. The MD-501 has a dark

count of less than one count/sec. This dark count was ignored in all measurements because it is so

small.

It is important to be very careful when operating the MD-501 because the CEM requires 2.4kV to

operate2. The MD-501 must be operated at a pressure lower than 1× 10−4 torr or the high voltage
will create a plasma in the CEM that will act like a short circuit and destroy the electronics in the

MD-501. The plasma is also bad for the CEM because it can erode the walls of the CEM.

2.4 LabVIEW Programs

Making measurements by hand is a difficult and error-prone process. By automating the process

it is faster to make measurements and easier to account for source fluctuations in the calculation

of the reflectance. This was done using the LabVIEW software and a National Instrument Data

Acquisition board (NIDAQ). Several programs were used to make the measurements. This section

will only outline how the key components of the programs work. There are three main programs:

FindMax, T2T (Theta 2 Theta), and VAR (Variable Angle Reflectance). In the future these file

names may change but the concept of making measurements should be the same.

The LabVIEW VAR virtual instrument (VI) that was used to make all the measurements is heavily

dependent on the FindMax.VI to find the peak of the reflected beam. Because of round off in the

subVI (StageControlSpring.VI) that controls the motors it was necessary to make sure the detector

was centered on the beam each time it made a measurement. Most of the time spent in making

the measurements is finding the maximum position of the beam. If the round off can be eliminated

from the StageControlSpring.VI, it will be possible to use fewer steps to find the peak or be able to

center on the peak with no addition searching for the peak intensity. Figure 2.7 outlines the process

for finding the maximum intensity of the beam.

The FindMax.VI is used in T2T.VI a θ\2θ program that will perform a simple theta two theta

reflectance scan. This subVI is not a workhorse like FindMax.VI, but simplifies programming a

more complex reflectance scan that checks the source intensity at various times during a multiple

2It is always a good idea to be careful around high voltages, but from my experience the MD-501 is not lethal
under normal circumstances. It does hurt if you happen to touch it.
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Figure 2.7: Flowchart of FindMax subVI. The dashed lines indicate the flow of data.

angle reflectance measurement. Figure 2.8 shows the process of making a θ\2θ scan.

The VAR VI combines all these programs and is entirely automated after the mirror and detector

are initially aligned. It checks the source intensity several times during the measurement and records

the time when the measurements were made to take into consideration the time varying fluctuations

of the source. It also calls other subVI’s to perform data analysis and make graphics files. The data

analysis is explained in Section 3.3. Figure 2.9 shows the process VAR.VI follows to take data.

All the LabVIEW programs may be found in Appendix C.3. They may also be found at

http://xuv.byu.edu/thesis/MSthesis.pdf.
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Chapter 3

Analysis of Data Taken Using the

VAR

This chapter will show a summary of the optical constants determined from the data taken using

the VAR and will largely focus on the analysis used to calculate the optical constants from the

measurements. Plots of the reflectance data and the confidence intervals are found in Appendix D.

Figure 3.1 shows a typical reflectance measurement that has been used to fit the optical constants

of the material. This data has been adjusted for irregularities in the surface of the diamond as will

be explained in Section 3.2.2.

3.1 Summary of Measured Data

diamond HOPG

λ (Å) n ± k ± n ± k ±
584 0.87 0.30 1.23 0.06 1.34 0.25 1.02 0.12
1025 1.38 err 1.22 err 1.42 0.15 0.63 0.11
1084 1.92 0.05 1.45 0.005 1.12 err 0.42 err
1134 1.98 0.07 1.32 0.02 1.63 0.05 0.17 0.12
1164 1.51 0.25 1.03 0.10 1.59 0.07 0.05 0.14
1199 2.08 0.06 0.99 0.02 1.43 0.07 0.20 0.14
1216 1.77 0.12 1.12 0.005 1.45 0.13 0.48 0.11
1640 2.05 0.29 1.07 0.10 0.97 0.17 0.40 0.10

Table 3.1: Summary of measured diamond and graphite optical constants measured at BYU using
the variable angle reflectometer.

19
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Figure 3.1: Example of variable angle reflectance data showing reflectance of diamond at 1216 Å.
Statistical error bars are included but are smaller than the diamond marking the data.
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3.2 Fitting Considerations

Fitting data to a complicated model is, at best, an art. Some of the “art” required may be avoided

by making the model to be fit as simple as possible. This thesis was designed to use single bulk

layers of a material to keep the fitting model simple. Carbon was also used in this thesis because

carbon does not form an oxide that would complicate the fitting model by adding addition fitting

parameters to the model.

There are other factors that should be considered when fitting the optical constants of a material.

Measuring the reflectance at multiple angles is best suited for determining the real part of the index

of refraction. The imaginary part may also be determined by using reflection measurements, but the

absorptive properties of a material is best determined by measuring the transmission through a film

of known thickness. Analysis of reflection data does a reasonable job at determining the imaginary

part of the index of refraction (see Table 3.2). Data taken using a bulk sample will only give the

optical constants for the bulk material. The optical constants of a thin film will differ from those

of the bulk material, but that is not the object of this thesis. For more on the optical constants of

thin films see Windt [12].

3.2.1 Uniqueness of Solution

It is important to address the question of uniqueness, because a reflectance curve fit to a data set

may look good to the eye or even have a low χ2, but there may be several combinations of n and

k that will fit the data well. If there is more than one reflectance curve that will fit this data well

then there is not a unique solution for one reflectance curve. If there is more than one solution, the

best solution needs to be found. This problem has been addressed before and there are many known

ways to find global extrema [13]. The global extrema in this case is the best n,k values that will fit

the data assuming all n,k have been tried as possible fit parameters. A local extrema may be found

if only a certain range of n,k values are used. Then it is possible that the best n,k are outside the

chosen range. It is very difficult to verify that the “best” fit n,k values are truly the values that

nature uses. Finding “best” fit n,k values can also be affected by systematic error in the model or

data.

A simple way to see if there is one good solution to a set of data is to calculate a set of data using

a well defined set of optical constants. Then put the calculated data back into IMD, but with the

wrong initial conditions and fit the contrived data to see if it fits the same data to the original n

and k. If the fit values of n and k match or are close to the original, even if initial conditions are

obviously wrong, it may be assumed the n and k determined from the fit are unique. This is by no

means a proof that the fit values are unique but it is a simple test to show how much a fit number

may be trusted to be unique. The following table shows that in all cases, except for when n = 0.601

and k = 0.010, the fit optical constants match the original optical constants accurately to three

decimal places. The initial n and k used for the fits are 1 and 11. Table 3.2 covers a broad range

1Originally the initial value of k was zero, but IMD warned a small original value is a bad starting point. I tried
it anyway, and it gave horrible fits, so I chose k to be the next positive integer, one.
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Original Fit Original Fit
n k n k n k n k

0.010 0.009999 0.010 0.010000
0.111 0.111000 0.111 0.111000

0.601 0.333 0.601000 0.333000 1.111 0.333 1.111000 0.333000
1.111 1.111000 1.111 1.111000
2.222 2.222000 2.222 2.222000

0.010 0.010000 0.010 0.010000
0.111 0.111000 0.111 0.111000

1.333 0.333 1.333000 0.333000 1.699 0.333 1.699000 0.333000
1.111 1.111000 1.111 1.111000
2.222 2.222000 2.222 2.222000

Table 3.2: Computational results of fitting dummy indices of refraction to contrived data, using the
initial values n, k = 1. Some uncertainties are listed are err because the confidence interval was
difficult to interpret.

Original Fit Error in Fit
n 0.601 0.601294 0.05%
k 0.010 0.009626 3.74%

Table 3.3: Compare good reflectance data with erratic reflectance data.

and the results show that these initial conditions will fit any range of n and k to be found in the

EUV. This is only shown for a single bulk material. Fitting the optical constants and thicknesses

of various thin layers will not always yield a unique result.

The results of Table 3.2 are based on data that was calculated using IMD. In real life the data will

not be smooth, but may have regions where there is significant error in the data. Ignoring the error

bars that may be calculated, will the values of fit optical constants still be reasonable? To provide

one possible answer to the question take one set of calculated data from Table 3.2 and convolute the

original data with Gaussian noise. Then, as before, fit the data using the initial optical constants

n, k = 1. The fit does not exacly match the original optical constants, but the data is flawed at

several places. Data that is as obviously flawed as the data in Figure 3.2 should be remeasured. The

error in n is acceptable, but there is quite a large error in k. The value of χ̃2 is 3.7 × 10−4 larger
than the χ̃2 (9.9 × 10−11) of a smooth set of data. But the χ̃2 of the data with Gaussian error is
still much less than one indicating that the fit is reasonable (see Section 3.3.2).

3.2.2 Fitting Model

Surface Roughness

The surface roughness is one parameter of the fitting model that was measured using atomic force

microscopy (AFM). Because the surface roughness has been measured using an external method it



3.2. FITTING CONSIDERATIONS 23

N=1 K=1 <n,k fit>

(λ=1216.00 Å)

0 20 40 60 80 100
Grazing Incidence Angle, θ [deg ]

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

le
ct

an
ce

, R

R 
R (measured)

Figure 3.2: Fit of data that purposely had Gaussian error added and was then fit using initial
parameters n, k = 1. The error was added by multiplying the original data by a random set of
numbers that had a Gaussian distribution. Because the error was multiplied into the data the noise
is more easily seen at points of higher reflectance.
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does not have to be fit to the model. This reduces the number of fitting parameters, and AFM is

the preferred method for quantifying the surface roughness at the sub nanometer level.

It is also important to know the surface roughness because it can make k appear to be larger than

what it really is. If light is scattered into another direction by an irregularity on the surface it will

not go into the detector, just the same as if it had been absorbed into the material. The surface

roughness will also affect the determination of n because the surface will appear to be less reflective,

giving the surface an effectively lower n. The relative changes in the surface roughness have to

be on the order of tens of angstroms before the effect on the optical constants is large enough to

be obviously wrong. But to accurately determine the optical constants it is important to include

roughness in the model that will be used to determine the optical constants

The surface roughness is calculated from the calculated power spectral density (PSD). The PSD

is calculated by taking the Fourier transform (FT) of the features on the surface of the sample.

Because there is roughness over different length scales, there are semi-periodic fluctuations on the

surface of the sample. The FT of the surface calculates what variations are periodic over multiple

length scales. The PSD gives a measure of the roughness over large and small scales. The roughness

is obtained by integrating the PSD. This is actually the two dimensional form [14].

σ2 = 2π

∫ ∞

0

PSD(f) f df (3.1)

Diamond (Industrial Fused)

Industrial diamond made from hot pressed, fused diamond micro-crystals was used for all the mea-

surements in this thesis. After the diamond was fused together it is assumed the surface of the

diamond was polished using a diamond paste. Because of the polishing a significant amount of

roughness was expected. What was unexpected were deep pits that cover the surface of the sample

(see Figure 3.3). The pits do not completely obscure the surface because the areas between the pits

are flat from the polishing. The sides of the pits are sufficiently steep and the bottoms are rough so

it is assumed that any light that enters a pit will be scattered into all directions. The effect of these

pits is to reduce the area of the diamond that will reflect light.

The area of the sample that is covered with pits is calculated by importing the AFM image into

MATLAB and counting the number of pixels that are black by calculating a histogram of the

intensity of the pixels (see Figure 3.4.) This was done using a simple program that can be found in

Appendix D.3. The pits cover about 2% of the surface of this image. This image is representative

of the whole surface of the diamond.

All the diamond data was modified by the following function. The extra term is put in the denom-

inator because the measured reflectance will be smaller than it should be if there are pits on the
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Figure 3.3: AFM image of diamond showing the pits on the surface. The pits take up approximately
2% of the surface. The lines that cross the image diagonally are assumed to be from polishing.

surface of the sample2.

Rm =
R

(1− 0.02) (3.2)

The surface roughness of the flat areas between the pits was determined by PSD to be about 30 Å rms

roughness.

Graphite (HOPG)

The surface roughness of the graphite was small enough that the background noise was the significant

contribution to the signal measured by the AFM. The resolution of the AFM is at worst 1–2 Å, so

it is assumed that the roughness of the graphite is less than 2 Å. In the fitting models the roughness

of the graphite was set to zero.

2The data used in the fitting was actually modified by

Rm =
R

(1− 0.02 sin θ)

It was later determined that that it would be better the remove the angular dependence. The calculated values of n
and k should be slightly different, and given the systematic errors in the data this mistake is well contained within
the error bars.
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Figure 3.4: Histogram of AFM image to determine what fraction of the surface is covered by pits.
The number of black pixels in the first bin is about 630 and the size of the image is 135 x 248, so
about 2% of the surface is covered by pits.
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3.3 Error Analysis

To accurately describe the optical properties of a material it is necessary to report the measured

value and the error associated with the determination of the reported value. This thesis is not

devoted to statistics, but it is important to explain the statistical methods used in fitting the optical

constants. It is also important for anyone who wants to understand the statistics that is used in

the LabVIEW VI’s. The standard error, SE, will be used as an approximation to σ, the standard

deviation in fitting the optical constants and calculating the confidence intervals. IMD will be used

to fit the optical constants and calculate confidence intervals based on the χ2 test to verify the

reported error bars.

Two sources of error will be considered in calculating SE. Any other error due to misalignment

of the apparatus is assumed to be negligible (see Appendix E for alignment details.) The first

error is due to the counting of individual photons entering the detector during a beam intensity

measurement. This type of error is often known as “shot noise” and is described by a Poisson

distribution. For large numbers of counts (n > 1000) a Poisson distribution approaches a Gaussian

distribution [15]. Assuming that there are enough counts and that Gaussian statistics are sufficient,

the error contribution due to “shot noise” is given by

σ =
√
n (3.3)

3.3.1 Time Dependent Source Variations

The second source of error is due to the time variations of the source intensity. For unknown reasons,

the intensity of the source may be constant, increase, or decrease over time. In other measurement

systems this is reconciled by using a second detector to measure the intensity of the beam before it

reflects off the sample. This second detector is used to normalize the source intensity at the same time

the reflected intensity is measured. In general this would be the preferred method for monitoring the

fluctuations of the source intensity because the source intensity can be measured without moving the

detector. This saves time and possible misalignment. Due to time and other constraints a second

detector was never installed. To account for the time variations of the source, the source intensity

is measured multiple times during the measurement of a sample. Then a quadratic function is fit to

the variations in the source intensity so the intensity of the source can be interpolated for any time.

The General Polynomial Fit VI from the Mathematics, Fitting section of LabVIEW is used to fit the

source intensity measurements to a line. The details about how it works may be found by going to

the Help section in the LabVIEW program. The error associated with the fitting is calculated using

inference for regression that is very similar to a weighted multiple regression [16]. The standard

error is given by

SE = s

√

1

n
+
(x∗ − x̄)2
∑

(x− x̄)2 (3.4)

Where n is the number of source intensity measurements, x∗ is position that is being evaluated, and
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s is given by

s =

√

1

n− 2
∑

(y − ŷ)2 (3.5)

where ŷ is the calculated source intensity.

The total error of the source intensity is combined with the “shot noise” error of the reflected

intensity by summing the squares of the fractional standard deviations. This assumes the “shot

noise” and fitting error are uncorrelated. This is a valid assumption because the source intensities

and reflected intensities are measured at separate times. This would not be true if a two detector

setup was used because the source intensity variations would be measured at the same time the

reflected intensity was measured. The fractional standard deviation is

S =
s

X
(3.6)

The combined standard deviation is then given by

Stot =
√

S21 + S22 (3.7)

3.3.2 Test for Goodness of Fit

This section follows the discussion in Reference [17]. The χ2 test is used to test if the error bars

calculated using the standard deviation are reliable. The χ2 test assumes the distribution is Gaussian

and compares the relative difference between the fit reflectance and the measured reflectance to the

standard deviation.

χ2 =

n
∑

k=1

(Ok − Ek)
2

E2k
(3.8)

where n is the total number of measurements, O is an observed values, and E is the expected value.

The fit is considered good if χ2 < n and poor if χ2 À n.

Degrees of Freedom and Reduced χ2

A better way of testing the goodness of a fit is to compare χ2 to the degrees of freedom instead of

n the number of data points. Depending on the data or the complexity of the fit there will fewer

degrees of freedom compared to the number of data points. Another way to look at it to say each

data point carries information. If a parameter is fit to a data point the information in that data

point has been used, and it cannot be used again to calculate other parameters including χ2. The

number of degrees of freedom is easily calculated

d = n− c (3.9)

where n is the number of data points and c is the number of constraints or parameters that are

being fit to the data set. Using this definition the expected value of χ2 should be d, the degrees of
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freedom.

χ2expected = d (3.10)

This may be taken a step further by dividing χ2 by d to get the reduced chi squared or the chi

squared per degree freedom.

χ̃2 = χ2/d (3.11)

Now the expected value of χ̃2 should be 1 or smaller. This is only approximate; if χ̃2 ∼ 1, the

fit may still be good. But if χ̃2 À 1, then there is significant error in the fit. The reduced χ2 of

the fit n,k values is much greater than one. The fits appear to follow the data, but the error bars

associated with the data only describe the statistical error in the data. There is still systematic

error that is present in the data. The large value of the reduced χ2 is indicative of systematic error

in the data. The systematic error may be estimated to obtain a smaller reduced χ2, but this was

not done because of time constraints. Some systematic errors can be seen in the data (see Appendix

D). These include having little data a grazing incidence because of the small size of the samples,

jumps in the data where the source intensity was normalized, and dim spectral lines requiring longer

integration times. The χ̃2 of the fits was very large because the error bars used to calculate the

optical constants did not include the systematic errors. The χ̃2 for each fit can be read off the plots

in Appendix D.
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Chapter 4

Atomic Scattering Theory

The second purpose of this thesis is to determine what is the error associated with using atomic

scattering factors (ASF) to determine the optical constants in the EUV. This can be done by

seeing where the atomic scattering factors of graphite and diamond are significantly different. The

definition of significantly different will depend on the application.

To compare data to a theory requires at least a working understand of the theories to be tested.

Atomic scattering theory is very good at predicting the optical properties of a material in certain

regimes of the electromagnetic spectrum. Most theories make assumptions to make it possible to find

an analytic solution. Only a first principles calculation, that makes no assumptions, will accurately

predict the optical properties of a material.

Only atomic scattering factors will be covered in the body of this thesis but Drude theory and

Lorentz oscillator theory are covered in Appendix A.

4.1 Independent Particle Approximation

At high enough energies (typically > 50 eV) it is possible to assume that the core electrons will

participate in the determination of the optical properties of a material. If the light has enough

energy it will interact with a fixed number of core and valence electrons. If the light is higher or

lower in energy different groups of core electrons will be involved in the interaction with the light.

Eventually at high enough energies all the electrons in the atom will be involved in the interaction.

It would be desirable to determine how many electrons are participating in the interaction with the

incoming light. It would be even better if at high energies the parameter the represents the index of

refraction would equal the atomic number of the element. For example, carbon has six electrons so

at high energies this parameter would be six. This means that all the electrons in a carbon atom are

interacting with the light by reflecting or refracting the light. Besides using Kamers-Kronig relations

(see Section 4.2.2) to check the validity of the calculated optical constants, a simple check would be

to make sure the limit at high energy was six.

31



32 CHAPTER 4. ATOMIC SCATTERING THEORY

This theory is known as atomic scattering factors (ASF). It assumes the electrons are free to respond

the the electric field, and is based on classical physics that describes each electron as a point charge

that scatters light in many directions. For example, for a given atom at some energy four electrons

are interacting with the light. Multiply the scattering effects of a classical electron scattering light

by four to get the effective scattering of that particular atom.

The following is not a perfect example, but it illustrates the point. Imagine stirring gold spheres

into a bucket of water and measuring the reflectance of the water and how much light it transmitted

through the water. If more gold spheres are added to the water more light will be reflected and less

light will pass through the water. This is similar to having a lot of electrons that scatter light. Each

electron, in this situation, will strongly interact with the light by reflection or absorption.

What if, instead of gold, the spheres were made of glass? Even though there are many pieces of

glass that can scatter the light not much is scattered because the glass is transparent to the light.

This is very similar to high energy light interacting with some material that has a lot of electrons.

Even though there are a lot of electrons that are influenced by the light, the electrons themselves do

not scatter the light very much. So for the most part, the light passes through with little refraction,

reflection, or absorption.

The following discussion closely follows the discussion in Reference [18].

4.1.1 Scattering Cross Sections

Before launching into the discussion of ASF it is important to review scattering cross sections. The

ASF theory is based on comparing the scattering cross section of an atom to the scattering cross

section of a single electron. Scattering cross sections have units of area. From a conceptual point of

view, a scattering cross section describes how “wide” an object looks to something else that could

hit it. A barn will have a larger scattering cross section than a fly because it is easier to hit. Unlike

balls bouncing off the side of a barn, light scattering by an electron or atom will scatter into all

directions including the forward direction.

The scattering cross section is defined as the scattered power divided by the intensity of the incident

beam.

σ ≡ P̄scatt

|S̄i|
(4.1)

Where the bar means quantity is the time average. Power has units of watts, intensity has units of

watts/m2, so P/S has units of area. This relates the light scattered by an electron or atom to the

apparent area of the electron or atom.

4.1.2 Scattering of a Single Free Electron

Start by looking at the scattering of a single free electron. Why free? The electrons in a material

are bound to the atoms of the material. At high enough energies it is possible to have electrons

that are bound to the atom by energies that are much smaller that the energy of the light. So the
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electron behaves as though it were free to the incident light. Akin to a car being able to move over

a scratch in the pavement. Yes, the scratch is in the path of the car, but the effect it has on the

moving car is negligible.

This assumption, that the electrons are free to respond to the incident light, breaks down around

band edges where the binding energy of the electron is comparable to the energy of the incoming

light. It also breaks down for low energy light because the energies of valence electrons are on the

order of the energy of the incident light, and the energies of the valence electrons are significantly

affected by the crystalline properties of the material. Quantifying how much the crystal properties

make a difference over what range of incident light energy is purpose of this thesis.

As with most classical phenomena involving charges and electrons start with the Lorentz force law

f = ma = −e(Ei + v ×Bi) (4.2)

This can be simplified by assuming the electron does not approach relativistic speeds and remem-

bering B = E/c. The acceleration on the electron due to the magnetic field is several orders of

magnitude smaller that the acceleration due to the electric field.

The acceleration of the electron has the form

a = − e

m
Ei (4.3)

The amplitude of the scattered electric field depends on the transverse acceleration of the electron.

aT = a sin θ = − e

m
Ei sin θ (4.4)

The scattered electric field depends on the acceleration of the charge.

E = − e
2Ei sin θ

4πε0mc2r
e−iω(t−r/c) (4.5)

Equation 4.5 can be simplified by introducing the classical electron radius

re =
e2

4πε0mc2
(4.6)

Now relate P̄scatt to the scattered electric field and |S̄i| to the incident electric field. The dipole
radiation of an accelerated electron is

P =
8π

3
(
e2|a|2
16π2ε0c3

) (4.7)

The incident intensity may be calculated using the Poynting vector

S̄ =
1

2
(E×H∗) (4.8)



34 CHAPTER 4. ATOMIC SCATTERING THEORY

Again using E = B/c Equation 4.8 becomes

S̄ =
1

2

√

ε0
µ0
|E|2 (4.9)

Now put it all together using the acceleration given by Equation 4.4.

σ =
P̄scatt

|S̄i|
=
8

3

e4

16m2πc3

√

µ0
ε0

(4.10)

With a little work using c = (ε0µ0)
−1/2 the last part of Equation 4.10 can be made to look like re.

The scattering cross section of a free electron is given by

σe =
8π

3
r2e (4.11)

This result was first obtained by J.J. Thompson [19].

4.1.3 Scattering by a Multi-Electron Atom

To model the scattering by a multi-electron, one of two approaches may be taken. It may be assumed

the wavelength of the light is large compared to the atomic distances. This assumption is also used

in Appendix A.1 to make the electric field over a region be uniform so the calculation is easier. It

effectively smears out the electronic distribution of the atom. Another way is to define the electron

distribution within the atom. One way it may be expressed is to assume the electrons are distinct

points represented by delta functions. This representation is not valid in the quantum mechanical

limit, but in the end it still gives the correct result. It gives the correct result because at the end of

this derivation the wavelength must be much larger than atomic dimensions to make the result be

generally applicable. In this limit is it not unreasonable to ignore the quantum mechanical nature

of the electrons. The why is a delta function then used to define the position of the electrons? The

delta function will collapse the r integral making it possible to simply add the number of electrons

to get the overall effect, which is one of the strengths of ASF theory.

N(r, t)

R
= n(r, t) = −e

Z
∑

s=1

δ[r−∆rs(t)] (4.12)

The current density is found by multiplying the electron distribution by the velocity of the each of

the electrons.

J(r, t) =

Z
∑

s=1

δ[r−∆rs(t)]vs(t) (4.13)

It is assumed the vs(t) term is driven by the incoming field and is not affected by fields scattered

off of neighboring electrons. This assumption is known as the Born approximation.

The next several steps depend heavily on Fourier transforms (FT). For some problems it is easier

to transform a problem from position space to momentum, or wave number space. On the surface
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Figure 4.1: Scattering of light by an electron

it may seem to complicate the problem, but it actually makes it possible to solve the problem. Two

transforms will be used to take r → k and t → ω. Use J(k, t) to solve for E(k, ω). Then take the

inverse Fourier transform to get E(r, t).

First Fourier transform (FT) J(r, t)

J(k, ω) =

∫ ∫

J(r, t)ei(ωt−k·r)dr dt (4.14)

Now use the representation of the current density from Equation 4.13 in the above equation

J(k, ω) = −e
Z
∑

s=1

∫ ∫

δ[r−∆rs(t)]vs(t)e
i(ωt−k·r)dr dt (4.15)

The delta function of r easily collapse the r integral. This does assume the time dependence of

the ∆rs term is negligible compared to other time constraints in the integral. This also means the

electrons move slowly in the atom compared to the oscillation of the field in the atom. Given these

assumptions the current density now looks like

J(k, ω) = −e
Z
∑

s=1

e−ik·∆rs(t)

∫

vs(t)e
iωtdt (4.16)

The remaining integral is a FT of the velocity from time space into frequency space.

Jk,ω = −e
Z
∑

s=1

e−ik·∆rs(t)vs(ω) (4.17)
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Now solve for E(r, t) using Jk,ω. This expression can be found in Reference [18].

E(r, t) =
−i

ε0(2π)4

∫ ∫

ω JT (k, ω)e
−i(ωt−k·r)dk dω

ω2 − k2c2 (4.18)

where JT (kω) is the transverse current density in the atom of interest. Only the electrons that are

moving in the transverse direction to the observation point will produce fields that will be detected.

Now explicitly write out the components in the current density and factor the denominator knowing

the solution will require contour integration.

E(r, t) =
ie

ε0(2π)4

Z
∑

s=1

∫ ∫

ω e−ik·∆rvs(ω)e
−i(ωt−k·r)dk dω

(ω − kc)(ω + kc)
(4.19)

The radial parts in the exponents may be combined into a single expression by looking at the relative

geometry of r and ∆rs (see Figure 4.1).

rs ≡ r−∆rs (4.20)

Using the above definition and combining the terms in the exponents Equation 4.19 may be written

as where rs points from the source to the observation point.

E(r, t) =
ie

ε0(2π)4

Z
∑

s=1

∫ ∫

ω ei(k·rs−ωt)vs(ω)dk dω

(ω − kc)(ω + kc)
(4.21)

This integration may be evaluated using contour integration. There are two simple poles of order

1 at k = ±ω/c. To complete the integral it must be assumed that k has an imaginary component.
This makes the eik·r term in the numerator go to zero when k is large and imaginary during the

contour integration. The contour is closed in the upper half plane to make the numerator go to

zero1. The imaginary component of k also brings the poles off the real axis so the pole is completely

enclosed in the contour. The pole being entirely enclosed is only makes the algebra slightly easier

and is not crucial, assuming the integral did not blow up for large values of k. There a several more

details that are needed to finish the problem that may be found in Reference [18]. After the contour

integration Equation 4.21 becomes

E(r, t) =
e

ε0(2π)4

Z
∑

s=1

1

rs

∫ ∞

−∞

(−iω)vs(ω)e
−iω(t−r/c) dω (4.22)

All that is left is to evaluate the ω integral. First recognize that the −iω comes from taking the

derivative of the exponent. Because vs(ω) does not depend on t Equation 4.22 may be written as

E(r, t) =
e

ε0(2π)4

Z
∑

s=1

1

rs

∫ ∞

−∞

d

dt
(vs(ω)e

−iω(t−r/c)) dω (4.23)

1If there was an extra negative sign in the exponent the contour could be closed in the lower half plane with the
same result.
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This is verified by taking the derivative. Now let t′ = t − r/c and pull the derivative out of the

integral2. Equation 4.23 now becomes

E(r, t) =
e

ε0(2π)4

Z
∑

s=1

1

rs

d

dt

∫ ∞

−∞

(vs(ω)e
−iω(t′)) dω (4.24)

which is the inverse Fourier transform back into a retarded time domain. The extra r/c comes from

the extra time it takes the fields to reach the observation point. The electric field as a function of

space and time is now

E(r, t) =
e

(4π)ε0c2

Z
∑

s=1

1

rs

d

dt
vs(ω(t− r/c)) (4.25)

Evaluate the time derivative to get the acceleration and use t′ = t− r/c.

E(r, t) =
e

ε0(2π)4

Z
∑

s=1

aT,s(ω(t
′))

rs
(4.26)

The term inside the sum is the electric field radiated by an accelerated electron [21]. The sum allows

the influence of more than one electron to taken account of.

Several things can now be said about the analysis so far. First start by defining the positions of the

electrons inside the atom using delta functions. Then define J, the FT of J and use it to calculate

the FT of the electric field. Solve the inverse FT to get E as a function of r and t, and what comes

out? An expression for the electric field. This same result could have been obtained by summing

the field coming from individual electrons, accounting for the distance of each electron. What this

really means is that each electron is behaving as though it was in a vacuum. This is sometimes called

the independent particle approximation. This should be what was expected because the interaction

between neighboring electrons was assumed to be small and was ignored. So the definition of J

is what really makes the electrons behave like isolated charged particles. This is very similar to

Appendix A.1.1 where the electrons are assumed to be driven by the incident electric field and the

interactions between the electrons is negligible. These approximations still allow for a good result

because of the positive nuclei that help screen out the repulsive Coulombic forces. For high energies

this is a good approximation for ASF because each electron is essentially free compared to the

binding energies of the electrons. In the EUV this is not true. The energies of the electrons and

their bonds becomes more important than it is for ASF in the x-ray portion of the spectrum.

Equations of Motion

Now write out the equation of motion. Assume there is a damping term that is proportional to γ

and a restoring force that is proportional to ω2s . Physically γ is related to the energy lost during

collisions and ω2s is related to the Colombic attraction that holds the electrons to the atom. The

electric field provides the driving force. As always, any contribution to the force from the magnetic

2Switching the order of integration and differentiation of two variables is not always this easy, but it can be done
in a general way [20].
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field is ignored. It may seem odd to be including the damping and restoring forces when it was

completely ignored in the discussion of ASF. ASF are useful away from resonances or places where

the damping and restoring forces plays a significant role in the optical response of the material, but

to relate ASF and oscillator strengths it is necessary to introduce the damping and restoring forces.

m
d2xs

dt2
+mγ

dxs

dt
+mω2sxs = −eEi (4.27)

This equation can be solved by assuming the motion is oscillatory and at the same frequency as the

incoming wave.

xs(t) = xse
−iωt (4.28)

Putting this into Equation 4.27 and taking the derivatives

m(−iω)2xs(t) +mγ(−iω)xs(t) +mω2sxs(t) = −eEi (4.29)

Explicitly write out the spatial and time dependent parts of Ei.

Ei(r, t) = Eie
−i(ωt−ki·∆rs) (4.30)

Combine Equations 4.29 and 4.30, and solve for xs(t).

xs(t) =
1

ω2 − ω2s + iγω

e

m
Eie

−i(ωt−ki·∆rs) (4.31)

Take two time derivative to get the acceleration.

as(t) =
−ω2

ω2 − ω2s + iγω

e

m
Eie

−i(ωt−ki·∆rs) (4.32)

Multiply this result by sin θ to get aT,s. Then substitute into Equation 4.26

E(r, t) =
e2

4πε0mc2

Z
∑

s=1

ω2sEi sin θ

ω2 − ω2s + iγω

1

rs
e−i[ω(t−rs/c)−ki·∆rs] (4.33)

The front term may be recognized as the classical electron radius (see Equation 4.6). From Figure

4.1 it can be seen that if r À ∆rs then the angle between r and rs will be very small. Any correction

may be approximated as subtracting the projection of ∆rs from r. This should almost always be a

good correction because most experimental measurements are much larger than the beam spot on

the sample.

rs ' r − k0 ·∆rs (4.34)

Now gather like terms, and make the further simplification that the correction to rs is most important

in the calculating the relative phase. The amplitude term can be simplified as r assuming the slight
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change in distance will not significantly change the amplitude.

E(r, t) =
e2

4πε0mc2

Z
∑

s=1

ω2sEi sin θ

ω2 − ω2s + iγω

1

r
e−u[ω(t−r/c)+ω(

k0·∆rs

c
)−ki·∆rs] (4.35)

Write kk0 = k and remember that ω/c = k to simplify the phase term that depends on k.

E(r, t) =
e2

4πε0mc2

Z
∑

s=1

ω2sEi sin θ

ω2 − ω2s + iγω

1

r
e−i[ω(t−r/c)+(k−ki)·∆rs (4.36)

The phase term may be simplified further by defining

∆k = k− ki (4.37)

Where ∆k is related to the material scattering the

2θ ∆k

k

k

i

Figure 4.2: Bragg diffraction is k space. This

version of Bragg diffraction is often used in

solid state physics.

light into specific directions that depend on the struc-

ture of the material. From Figure 4.2 it is possible

to write Bragg’s law of diffraction

|∆k| = 2ki sin θ (4.38)

How does Bragg’s law of diffraction come out of try-

ing to calculate optical properties of materials? By

defining ∆k it was implicitly stating that this ma-

terial would not scatter light into all direction, but

into specific directions depending on how the elec-

trons were bunched together. It is also stating that

the electron bunches were not uniformly distributed

though the material, but that they could be found

in periodic bunches centered around specific points

(i.e. nuclei) in the solid.

One last time write out all the details of the electric field

E(r, t) = −re
r

[

Z
∑

s=1

ω2e−∆k·∆rs

ω2 − ω2s + iγω

]

Ei sin θe
−iω(t−r/c) (4.39)

The term in square brackets becomes the complex atomic scattering factor

f(∆k, ω) =

Z
∑

s=1

ω2se
−∆k·∆rs

ω2 − ω2s + iγω
(4.40)
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Write the electric field in terms of the ASF.

E(r, t) = −ref(∆k, ω)Ei sin θ

r
e−iω(t−r/c) (4.41)

The scattering cross section of a single free electron, Ee− , is given in Section 4.1.2.

Ee− = −reEi sin θ

r
e−iω(t−r/c) (4.42)

By combining Equations 4.41 and 4.42 the field scattered by a multi-electron can be written as

E(r, t) = f(∆k, ω)Ee− (4.43)

It is easy to see the ASF is a unitless parameter that relates the scattering of a multi-electron atom

to the fields scattered by a single free electron.

Using Equation 4.1 the scattering cross section of a multi-electron atom is

σ(ω) =
8π

3
|f |2r2e (4.44)

where f is the complex ASF.

The ASF as currently written is still difficult to use because the ∆k ·∆rs does not simplify and can
take on many values depending on the particular details of the situation.

Use Equation 4.38 with ki = 2π/λ to get

∆k =
4πa0
λ

sin θ (4.45)

Now take the dot product of ∆k and ∆r and assume the magnitude of ∆r is about the size of an

atom. For convenience use the Bohr radius a0.

|∆k ·∆r| ≤ 4πa0
λ

sin θ (4.46)

The phase dependence will be negligible in two cases

a0/λ¿ 1 (4.47)

θ ¿ 1 (4.48)

If either one or both of these two situations are satisfied, the phase dependence drops out of the

equation so the ASF may be expressed as

f0 =

Z
∑

s=1

ω2

ω2 − ω2s + iγω
(4.49)

Where the zero superscript means this from of ASF is only valid for situations where the phase

dependence is negligible.
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Other Regions where f0 is not valid

The simplified expression of f 0 is a good approximation when the two previous conditions are met.

Either the angle must be small or the wavelength must be larger than about the size of an atom.

This approximation is not valid around atomic resonance because the mechanics of the transitions

are not adequately described by the semi-classical model that was used to derive f 0. Even though

Equation 4.47 may hold for visible light ASF do not adequately describe the optical properties of a

material at visible wavelengths because the energy of the light is on the order of the energy of the

bonds in the material. Changes in the bonds of the material will significantly affect the way the

material responds to visible light.

Relating ASF to n,k

The real and imaginary parts of atomic scattering factors are very similar to the real and imaginary

parts described by the Lorentz oscillator model (see Appendix A.2). In Section A.2 the optical

constants n and k were derived by assuming there were oscillators in the material that interacted

with the light at different and specific frequencies. The behavior of each oscillator contributed to the

overall shape and behavior of the optical constants. By comparing Equations A.64, derived using

Lorentz oscillators, and 4.49 there a simple relationship that relates the complex index of refraction

to the atomic scattering factors.

n(ω) = 1− δ + iβ = 1− nareλ
2

2π
(f01 − if02 ) (4.50)

4.2 Sum Rules and Kramers-Kronig Relations

The theory of sum rules and Kramers-Kronig relations is different from the other theories in this

thesis. ASF, Drude theory, and Lorentz oscillators are used to better understand or predict the

optical properties of materials at various wavelengths of light. Sum rules are used to check the

validity of optical constant by “counting” the number of electrons that are involved in interactions

with light. Kramers-Kronig relations are used to calculate the imaginary part of the index of

refraction using the real part of the index of refraction or visa versa. Both of these methods are

extremely useful in test the validity of a set of optical constants.

4.2.1 Sum Rules

The discussion of sum rules follows directly from the discussion of atomic scattering factors (see

Section 4.1 and closely follows the discussion in [18]. The last equation in Section 4.1 showed the

ASF being a sum of oscillators.

f0 =

Z
∑

s=1

ω2

ω2 − ω2s + iγω
(4.51)
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At low energies the sum will only include those electrons that are influenced by the light and will not

include the influence of the core electrons because the light does not have sufficient energy. Equation

4.49 may be written as

f0 =

N(ω)
∑

s=1

ω2

ω2 − ω2s + iγω
(4.52)

where N(ω) denotes the number of electrons that will be involved in the scattering depends on the

frequency of the light used to probe the material.

Closely related to the oscillators at each ωs is an oscillator strength, gs, that corresponds to the

effective number of electrons associated with each ωs. In the semi-classical model that is being used

in this thesis gs is an integer value that represents the number of electrons that are involved in a

given resonance frequency.

f0 =
∑

s

gs = Z (4.53)

As an example, in carbon there are two K shell electrons, or two electrons that are more tightly

bound to the nucleus than the other electrons. The ωs associated with this resonance occurs at

284 eV (see Figure 4.3.) Above this energy both electrons will be able to scatter light, so the gs

associated with this resonance is 2. It can also be seen in Figure 4.3 that below this energy a carbon

atom has four electrons (N(ω < ωK) = 6− 2) that participate in the scattering of light.

Only allowing gs to take on integer values is an ideal case and can be made more general by allowing

gs to take on non-integer values. This corresponds to transition probabilities in quantum mechanics

that themselves are not integer values (An atom is slightly more complicated than a collection of

free electrons.) The sum rule still holds but the oscillator strengths are summed over the states in

the atom

f0 =
∑

n

gkn = Z (4.54)

where k is the initial state and k is the final state. This is known as the Thomas-Reich-Kuhn sum

rule [22, 23, 24]. The ASF can now be written in terms of gs

f0 =

Z
∑

s

gsω
2

ω2 − ω2s + iγω
(4.55)

For ω2 À ω2s Equation 4.55 will simplify to

f0(ω) =
∑

s

gs
ω2

ω2
=

∑

s

gs (4.56)

Integrating or summing over all frequencies is necessary if the real part of the index of refraction is

going to be determined from the imaginary part, but it is not a useful form for determining where

data is the measured spectrum is wrong. Partial sum rules may be used to calculate the effective

number of electrons that are involved in the scattering of light up to a certain energy.

Neff (ω) =
2

π

mε0
nae2

∫ ω

0

ω′ε2(ω
′) dω′ (4.57)
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Figure 4.3: At high enough energies the value of f 01 of carbon (Z=6) goes to six. This shows that
at high enough energies the atoms scatters light six times more than the light scattered by a single
electron. That is what should be expected because there are six electrons in a carbon atom.
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where ε2 = 2nk.

As the frequency of light sweeps through a resonance, the Neff of the atom should increase by

the number of electrons that are involved in the transition. Because most atoms have multiple

resonance it is important that the resonances are sufficiently far apart for this analysis to be well

defined. Otherwise it will be difficult to separate the effects of the two resonances. This principle

can be seen in Figure 4.3. Between 40 and 200 eV the f1 of carbon hovers around four before going

through a resonance around 280 eV and jumping up to six. If the resonance at 280 eV was farther

away f1 would taper off to four because of the four electrons that are involved in the scattering

around 100 eV.

There are other forms of sum rules that may be used to test the validity of a set of ASF. An

explanation of the various sums rules and their relationships can be found in Reference [4].

4.2.2 Kramers-Kronig Relations

Kramers-Kronig relations are a mathematical argument involving functions that have coupled real

and imaginary parts. The real and imaginary parts of optical constants are coupled because it is the

same electrons that are involved in determining the optical properties of a solid. This is known as

causality, or that the physical response described by optical constants is caused by the same physical

mechanism. There are more subtle arguments that involve causality, but for the purposes of this

thesis it is satisfactory to understand that if the way an electron scatters light can be described by

n, then the same electron will also absorb light, described by k, in a way that is related to the way

the electron scatters light. The two optical constants describe different material properties but they

are fundamentally related because it is the same electrons involved in the scattering and absorption.

The analysis in this thesis will not involve Kramers-Kronig relations, but for completeness the forms

of the integrals will be given. More details about evaluating Kramers-Kronig relations may be found

in Reference [4].

First assume the complex index of refraction is N = n+ ik. The Kramers-Kronig relations relating

the real and imaginary parts are

<[N 2(ω0)− 1] =
2

π
P

∫ ∞

0

ω=[N 2(ω)− 1]
ω2 − ω20

dω (4.58)

=[N 2(ω0)− 1] = −
2

π
P

∫ ∞

0

ω0<[N 2(ω)− 1]
ω2 − ω20

dω (4.59)

Notice that to get a single value of n or k at a fixed ω0 it is necessary to know the values of

optical constants at nearby ω’s. That is why it is important to know the optical constants for all

frequencies, because to truly use the Kramers-Kronig relations over measurements must be made at

all frequencies.

The compilation of ASF by Henke, et al. is based on the Kramers-Kronig relations. The real

part of the ASF was calculated using Kramers-Kronig relations from the imaginary part of the
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ASF. This method is used in other wavelength regimes to determine the optical properties of a

material. Depending on the region of focus and the available data different parts of the spectrum

are approximated by functions to patch holes in the data set. For this reason ASF and other optical

constants calculated using Kramers-Kronig are not the exact optical properties of the material but

an approximation using the data that is available.
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Chapter 5

Data

The industrial diamond and graphite (HOPG) data reported in Chapter 3.1 will not be used in the

analysis section of this thesis, because the data does not cover important features in the atomic

scattering of carbon. But it will be displayed for comparison. Data from previously published data

sets will be used for the analysis.

5.1 Summary of Optical Constants

Before calculating the relative difference between the ASF of diamond and graphite first examine

the atomic scattering factors of several references to determine which data set is the best to use for

the analysis. To determine which data set to use, plot the calculated atomic scattering factors of

diamond, graphite, and amorphous carbon. Most of this data was found digitized and gathered in

IMD [25].

Diamond and graphite have been measured previously and the optical properties are most often

tabulated as n and k values or f1 and f2 values. The most common reference for n and k values is

The Handbook of Optical Constants (HBOC) ed. E. Palik [5]. Optical constants are for cubic carbon

(c-C, diamond) are tabulated in HBOC I and range between 600–10,000 Å. The optical constants

for graphite (g-C) in HBOC II and range between 150–10,000 Å.

Atomic scattering factors (f1 and f2) were first compiled in a comprehensive way by B.L. Henke

et al [26]. The ASF tables have been updated since they were first published [27]. The data

for the updates may be found in References [28, 29, 30, 31] and are cited in this thesis as taken

from CXRO\LLNL [27]. ASF have also been calculated by Chantler within a self-consistent Dirac-
Hartree-Fock framework [32].

Data from Henke [26] and Chantler [32] are reported as f1 and f2 data, but all other references

report their data as n,k values. For the purposes of this thesis n,k values are converted to f1 and f2

values by inverting Equation 4.50. In general this conversion assumes the atomic scattering factors

are independent of the density of the material. Here that assumption is ignored in the conversion

47
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because the f1 and f2 values will not be used for calculating the optical properties of a material for

a real application but for the purpose of comparison.

f1 + if2 =
β

λ2
(1− n+ ik) (5.1)

where λ is the wavelength in meters and β is given by

β =
2πW

reρA

(

1× 10−2
)3

(5.2)

where W is the atomic weight in grams/mole, the cubed factor of 10−2 is to convert cm to m, re

is the classical electron radius in meters, ρ is the density of the material in grams/cm3, and A is

Avogadro’s number. This is the equation for a material made from one element. It is possible to

calculate the optical constants of a compound by summing the indices of refraction weighted by

their densities [18].

There are two preexisting references for the optical constants of diamond, but there is not good

agreement between the two data sets. By comparing the optical constants of diamond to those of

amorphous carbon and graphite it is possible to see the Palik data is more reliable. The optical

constants of diamond measured by Windt were determined from a thin film sample of chemical vapor

deposition (CVD) diamond. The difference in the optical properties may be due to the difference

between measuring a bulk film and thin film, but the surface of the diamond sample is reported in

Reference [12] to have visible surface irregularities.

Amorphous carbon is not used in the data analysis but it is useful for comparison because there are

very few references that report the phase specific optical constants of carbon.

5.2 Data Analysis

The second purpose of this thesis is focused on determining the errors associated with using ASF

to estimate the optical properties of materials in the EUV. That is done by calculating the relative

difference between the optical constants of diamond and graphite (HOPG).

As previously mentioned in Section 4.1 the atomic scattering factors give a measure of how many

electrons are participating in some interaction with light. At high energies all the electrons are

involved in the scattering of light, so it is expected that f1 will approach Z. But at low energies the

number of electrons involved in the interaction with the light depends on the crystal properties of the

material. ASF can still be calculated but they will be unique to the material that was measured and

will not be easily transferable to another crystal phase of a similar material, even if the difference

between the densities of the materials is taken into consideration (see Equation 5.1.)

The difference may be shown by calculating the relative difference between the ASF of one crystal
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Figure 5.1: Summary of atomic scattering factors of diamond from various references between 10–
10000 Å [5, 12, 27, 32]. Notice the low absorption of diamond at long wavelengths.
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Figure 5.2: Summary of atomic scattering factors of graphite from various references between 10–
10000 Å [6, 27, 32].
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Figure 5.3: Summary of atomic scattering factors of amorphous carbon from various references
between 10–10000 Å [6, 33, 34, 35, 27, 32].
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Figure 5.4: Relative difference in f1 30-160 nm. The difference appears to be zero for wavelengths
less than 750 Å, but because of the large vertical scale it is difficult to see if the relative difference
is zero or if it only approaches zero.

phase to another. The relative difference is calculated as may be expected

∆ =
fdiamond − fgraphite

fgraphite
(5.3)

The graphite data is used to normalize that data because as currently tabulated in HBOC II it has

data tabulated farther into the EUV than diamond. Because graphite is an anisotropic material it

has two sets of n,k values that depend on what direction the light is incident on the material.

Graphite data is tabulated for extraordinary and ordinary axis of the crystal in HBOC II [6]. Other

References [34, 33] have measured the optical properties of amorphous carbon, but not a graphite

crystal. Because graphite is anisotropic it is not possible to compare the n,k values for diamond

directly to the optical constants of graphite, because graphite has two n,k data sets of its own. For

this thesis the optical constants of graphite will be “averaged.” But not using a straight average

because there are three orthogonal directions in a crystal. Two axis are described by the ordinary

direction and one axis is described by the extraordinary direction. For example the “average” n is

calculated by

nave =
2no + ne

3
(5.4)
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Figure 5.5: Relative difference in f1 30–110 nm. The large discontinuity at 80 nm is due to the
merger of two diamond data sets that were used in the Handbook of Optical Constants. The error is
still about 25 % on average between 50–80 nm, and then decreases to zero around 40 nm. However
there is little data at and beyond the point where the relative difference goes to zero. It is impossible,
without more data at or below 40 nm, to determine if the difference goes to zero as expected or if
there is some “ringing” about zero.
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Figure 5.6: Relative difference in f2 30-160 nm. The relative difference in f2 goes to one at wave-
lengths greater than about 1100 Å. That wavelength corresponds to the band gap energy of diamond
at about 10 eV. At energies less than 10 eV the relative difference must be one because the f2 of
diamond is essentially zero.
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Figure 5.7: Relative difference in f2 30–110 nm. The relative error in f2 is less than that of f1. This
may be due to the different mechanisms that determine the dispersive nature and the absorptive
nature. It is probably why f2 in reported to 30 eV in the Henke tables and f1 is reported to 50 eV.
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These figures show that the greatest difference can be seen in the difference between the f1 values

of the different materials. In the case of carbon, the difference is pronounced above 750 Å or 16.5

eV. This difference should be material dependent to some extent.



Chapter 6

Conclusions

A variable angle reflectometer was built to measure the absolute reflectance of surfaces between

2.5◦ and 85◦. The usefulness of this chamber has been demonstrated by measuring the optical

properties of industrial diamond and HOPG at multiple wavelengths in the EUV. The reflectance

measurements have been automated using LabVIEW to control the stepper motors and calculate

the reflectance.

Atomic scattering factors are very useful for calculating the optical constants for soft and hard x

rays. The assumptions used to simplify the calculations at high energies are not valid in the visible

and IR portion of the spectrum. This is not a surprise because the theory is based on the assumption

that the atoms are independent of the crystal phase of the material. The relative difference in the

ASF of the material has been quantified by calculating the ASF of diamond and graphite from

tabulated values found in References [5, 6].

There is still a 20-40% relative difference between the ASF of diamond and graphite between 400-

700 Å (about 30–17 eV). That is 5–10 times greater than the average energy of a carbon to carbon

bond. This shows that the configuration of the valence electrons still plays a significant role in the

optical properties of a material at energies greater than 10 eV.

The effect of this difference can be seen by looking at the reflectance of light normal to a surface in

a vacuum given by

R =
n− 1
n+ 1

(6.1)

This assumes there is not absorption. Now assume that the index of refraction is actually n+∆n.

Now Equation 6.1 becomes

R =
n+∆n− 1
n+∆n+ 1

(6.2)

Expand the denominator using the binomial expansion to get back equation 6.1.

R =
n− 1
n+ 1

+
∆n

n+ 1
+
∆n(1− n−∆n)

(n+ 1)2
(6.3)
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Figure 6.1: General fractional first order correction in reflectance as a function of the index of
refraction and the fraction of change in the index of refraction. The vertical axis, c, denotes the
relative difference between the ASF and the horizontal axis denotes the real part of the index of
refraction, n.

If the correction term is some fraction of the original index of refraction, ∆n = cn it is possible to

calculate the error in the reflectance as a function of the index and the fractional difference in the

optical constants.

The work in this thesis does not show where the ASF of diamond and graphite converge. Because

of time and physical constraints it was not possible to measure the optical constants of diamond to

40 eV. The trend of the relative difference in f1 (see Figure 5.5) tends toward zero around 300 Å.

However, because of the lack of data for diamond at higher energies, it is impossible to tell if the

relative difference is monotonically decreasing, if the relative difference will oscillate about zero, or

if there is more structure to be seen in the relative difference at higher energies. There will be some

structure around absorption edges, but is there structure far from absorption edges that makes it

difficult to use ASF.

This thesis has only focused on elemental carbon because it has two well defined crystal phases and

there are no surface oxides that will make the determination of the optical properties more difficult.

Carbon is also a light element with only six electrons. There are no “inner” core electrons that may

be less affected by the crystal structure of the material. This may be determined by studying other

materials.
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This work may be most applicable to lighter elements that have electrons that are not shielded

by other electrons in the atom. Oxygen is a light element with eight electrons. Oxygen forms

compounds with most metals, and can be the bane or miracle of high reflectance. Because it is a

lighter element this analysis may be applicable in determining at what energies atomic scattering

theory may be used to accurately predict the optical properties of oxides.
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Appendix A

Classical Theories of Optical

Constants

A.1 Drude Theory

This discussion mostly follow the discussions in References [36] and [37].

With the advent of the kinetic theory of gases in the 19th century there was a great deal of physics

that was able to use the results of the kinetic theory of gases to describe other phenomena. Three

years after the development of the kinetic theory Drude used the kinetic theory of gases to describe

the conductivity of metals and the transparency of metals in the ultraviolet. The Drude theory

was successful at describing DC and AC conductivity. Because it was successful at describing AC

conductivity the Drude theory was also successful at predicting the dielectric properties or optical

properties of a metal.

Drude theory describes the behavior of electrons in a metal, but graphite and diamond are not

metals. Carbon is known as a semi metal, and graphite is conductive along certain directions, so

the Drude theory is a little related to the optical properties of carbon. The Drude theory is very

conceptual and is a good place to start a study of optical properties.

Drude theory works very well despite many incorrect approximations that are made to make the

problem easier. The number of approximations made is amazing, and the theory only works because

two bad approximations cancel. There are many approximations and I will first discuss the obvious

approximations, and then more subtle approximations in the theory.
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A.1.1 Approximations

Review of Ideal Gas Theory

In the ideal gas theory all the particles are assumed to be small hard spheres with a negligible size.

Between the collisions it is assumed there are no forces acting on the particles, so they travel in

straight lines according to Newton’s laws. When two particles collide it is assumed the collision is

instantaneous, or at least the time scale is small compared to other times involved in the problem.

It is also assumed that the gas is a low pressure so the volume of the particles does not significantly

effect the volume of the container. The actual electron density and pressure in a metal are much

greater than pressures and densities that the ideal gas law is good at predicting. Despite that the

ideal gas approximation works surprisingly well.

Drude’s Approximations

Besides using the ideal gas law Drude made several other approximations in developing his theory.

The first was to assume the electrons were bound to positive ions in the metal by coulombic forces.

The positive ions were assumed to be massive and move little. Electrons that are close the ion cores

are called core electrons and are not involved in the conductivity of the metal. Electrons not strongly

bound to the core are called valence electrons and are free to move in the metal. The number of

valence electrons in an atom is Z.

When an electric field is applied to a metal the valence electrons acquire a net velocity opposite the

electric field. The freedom of the electrons to move due to an applied electric field is denoted by

σ the conductivity. The conductivity is not infinite because the electrons scatter off the ion cores,

acquiring a random direction with each collision. The direction the electrons leaves the ion core

does not depend on the conditions before the collision. It is assumed that electrons do not scatter

off each other.

The electrons come into thermal equilibrium with the ions only through collisions. The velocity

an electrons leaves an ion core depends on the thermal properties of the ion core. No velocity

distribution is assumed, and would not significantly change the result of the Drude theory.

The average time between collisions is τ , and is known as the relaxation time. It is also known as

the collision time or the mean free time. The probability of a collision is given by τ−1. Much of the

information describing the collision is hidden in τ .

A.1.2 DC Conductivity

The goal is to derive the AC conductivity (eventually relating it to the optical properties of a

material), but the derivation of the DC conductivity is a good introduction for the AC conductivity.
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Given that background, start with Ohm’s law V = IR. A more general form of Ohm’s law is

J = σE (A.1)

where σ the conductivity is related to τ the relaxation time. As a reminder J = I

A . The current

density J is related to the net velocity of the electrons.

J = nev (A.2)

Where n is the number of electrons per unit volume, e is the fundamental charge, and v is the net

velocity of the electrons due to external forces. The net velocity of the electrons is also called the

drift velocity. When E = 0 the electrons are still moving but the velocities are randomly distributed

and cancel any net movement of the electrons.

To start solving for σ first solve for the velocity of the electron as a function of E and τ . The force

on an electron is

F = −e(E+ v ×B) (A.3)

Ignore B because the magnitude of B is negligible compared to E. The acceleration is simply

a = −eEτ
me

(A.4)

Assuming the initial velocity after the collision is zero, the velocity of an electron some time t after

the collision is

v(t) = −eEτ
me

t (A.5)

The average time an electron has to accelerate is τ , so the average velocity of an electron is

vave = −
eEτ

me
τ (A.6)

Plug this back into Equation 4.20 to get

J = (−e
2nτ

me
)E (A.7)

The term in parenthesis is the DC conductivity of a metal using Drude Theory

σ =
ne2τ

me
(A.8)

The conductivity σ is actually a second rank tensor, but Drude assumed the metal was isotropic.

Though graphite is anisotropic there is no good reason to make a simple theory harder than it needs

to be. Especially when Drude theory is very good a conceptually understand how light interacts

with a metal.

Now look at the mean free path of an electron to get a little better understanding about the behavior

of electrons in metals. The mean free path is the distance an electron will travel between collisions.
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Assume it depends on the relaxation time τ and it’s velocity v between collisions.

` = vot (A.9)

Ignore the contribution by E for simplicity and because its contribution is negligible. Solve for vo

using the classical equipartition of energy assuming three degrees of freedom.

1

2
mv2o =

3

2
kbT (A.10)

The relaxation time τ is estimated using the measured conductivity of common metals. At room

temperature vo ∼ 107cm/sec, so ` ∼1–10Å. About the distance between atoms, fortifying the concept
that electrons scatter off ion cores. Another way to think about it is the electron clouds are large

enough to overlap between atoms. This makes it easy for electrons to move through the metal

because the electron cloud is shared over multiple atoms [38].

DC Conductivity Fails

When a metal is cooled its conductivity increases. The temperature dependence of the conductivity

is not predicted by Drude theory. Also at low temperatures and not predicted by Drude theory, the

mean free path also increases to ∼1 cm! This means the electrons are scattering off of something
besides the ion cores because they are spaced every few angstroms. There are other interactions that

dominate at other temperatures that must be described by quantum mechanics. Drude theory works

reasonably well in regions when the quantum mechanical nature of materials does not dominate,

but its limitations can be seen in regions where quantum mechanics plays a more visible role in

the behavior of a material. Despite the failure of Drude theory, τ is still used to describe some

phenomena. It can be used to describe the behavior of conductors in large magnetic fields and the

AC behavior of metals.

Momentum Considerations

Now find the average momentum of an accelerated electron between collisions. This becomes im-

portant when solving for the AC properties of the conductivity. Between collisions the electron will

accelerate or change momentum if there is an applied electric field. Assume at time t the electron

has momentum p, and at some infinitesimal time later the momentum is given by p+ dt. The

increased momentum is

∆p(t) = f(t)dt+O(dt2) (A.11)

Ignore the second order terms. The momentum after a time dt the momentum is given by

p(t+ dt) = p+ f(t)dt (A.12)

A fraction of the electrons will be scattered in the time dt and will lose all memory of their previous

speed and direction. The fraction of the electrons that are scattered in a time dt is dt/τ . The
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remaining electrons will gain momentum and will be able to move with the applied electric field.

The number of remaining electrons that contribute to the average momentum is

1− dt

τ
(A.13)

Now put it all together to find the momentum after a time dt

p(t+ dt) = (1− dt

τ
)(p(t) + f(t) +O(dt)2)

= p(t)− dt

τ
p(t) + f(t)dt− f(t)

dt2

τ
+O(dt)2 (A.14)

Put all the dt2 terms into O(dt)2. The collisions between electrons is grouped in the O(dt)2 term
and will eventually be thrown out. For more details on why the second order term is small see pg

11 of Reference [36]. Gather all the momentum terms that are not multiplied by other terms on the

left side and all remaining terms on the right.

p(t+ dt)− p(t) = −dt
τ
p(t) + f(t)dt− f(t)

dt2

τ
+O(dt)2 (A.15)

Divide by dt and take the limit as dt→ 0.

d

dt
p(t) = −p(t)

τ
+ f(t) (A.16)

The negative in front of the first term is the damping term. This comes from the (1− dt
τ ) term that

is multiplied into the Equation 4.20 to account for the electrons that are involved in collisions.

A.1.3 AC Conductivity

Now assume the electric field is varying in time instead of the static field assumed in the section on

DC conductivity. Start by assuming the electric field is uniform over the surface and has a form

E(t) = Re(E(ω)e−iωt) (A.17)

Equation A.16 now becomes
d

dt
p(t) = −p(t)

τ
− eE(t) (A.18)

Also assume the momentum has the form

p(t) = Re(p(ω)e−iωt) (A.19)

Taking the derivatives and cancelling all terms with the form e−iωt the previous equation becomes

iωp(ω) =
p(ω)

τ
+ eE(ω) (A.20)
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Now it is possible to solve for the frequency dependent momentum and by extension the velocity

imparted to the electrons in the material by the electric field.

p(ω) = − eE(ω)1
τ − iω

(A.21)

The current density is defined to be

j = −nev = −ne
m
p (A.22)

where n is the number of electrons per unit volume. Combine Equations A.17 and A.21, and once

again, to remove the exponent from the equations, assume the current density is frequency dependent

and has the familiar form

j(t) = Re[j(ω)e−iωt] (A.23)

Ohm’s law now looks like

j = − e
1
τ − iω

E(ω) (A.24)

By comparing Equations A.1 and A.24 it is possible to recognize the frequency dependent conduc-

tivity to be

σ(ω) =
ne2

m( 1τ − iω)
=

σo
1− iωτ (A.25)

where

σo =
ne2τ

m
(A.26)

More may be done with the conductivity, but simplifying the conductivity will not illuminate the

optical properties any more than simplifying the final results. More details may be found in Reference

[37].

A.1.4 Maxwell’s Equations in Free Space

Maxwell’s equations are used with J found previously to solve for the dielectric properties of an

electron gas in a metal. The following are Maxwell’s equations in free space.

∇·E = 0 (A.27)

∇·H = 0 (A.28)

∇×E = −1
c

∂H

∂t
(A.29)

∇×H =
4π

c
J+

1

c

∂E

∂t
(A.30)
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A.1.5 Dielectric Properties

Now use the frequency dependent current in Maxwell’s equations to find the form of the dielectric

constant. Getting to Maxwell’s equations is the crux of explicitly solving for the dielectric and

optical properties of a material. Assume the electric and magnetic fields have the form

E = Eoe
−iωt (A.31)

H = Hoe
−iωt (A.32)

Now any time derivative will bring down a iωt to the derivative term.

Then, as is commonly done, take the curl of Equation A.29 to start solving for the wave equation.

∇×(∇×E) = −1
c
∇×(∂H

∂t
) (A.33)

Using the following vector identity

∇×(∇×E) = ∇·E−∇2E (A.34)

simplify the left hand side of the previous equation. This will further simplify by recognizing that

Equation A.27 makes the first term be zero. Now use the time derivative of Equation A.30 get

Equation A.33 entirely in terms of E.

−∇2E =
iω

c
∇×H

=
iω

c

[

4πσ

c
− iω

c

]

E

=
ω2

c2

[

1 +
4πiσ

ω

]

E (A.35)

Equation A.35 is now in the form of the wave equation. The dielectric constant may then be

recognized to

ε(ω) = 1 +
4πiσ(ω)

ω
(A.36)

A.1.6 Plasma Frequency

Solving for the dielectric constant is only the beginning of understanding the optical properties of a

material. One property that may be derived is what is known as the plasma frequency. It is used

to estimate at what frequency a metal will become transparent. Start by explicitly writing out the

conductivity part of Equation A.36.

ε(ω) = 1 +
4πiσo

ω(1− iωτ) (A.37)
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Separate the real from the imaginary parts by multiplying the second term by the complex conjugate

of the denominator. This yields

ε(ω) = 1 +
4πσo

1 + ω2τ2
+ i

4πσo
ω(1 + ω2τ2)

(A.38)

For notational convenience label the real and imaginary parts.

ε(ω) = ε1 + iε2 (A.39)

At a high enough frequency ωτ À 1 it is possible to simplify the denominator without losing too

much information. Explicitly include σo (equation A.26.)

ε(ω) ' 1− 4πne
2iτ

ω2miτ
(A.40)

Cancel terms and group all the constants.

ε(ω) ' 1− ω2p
ω2

(A.41)

ω2p ≡
4πne2

m
(A.42)

This result has significance when it is put back into the wave equation. One form of E(ω) that

satisfies the equation A.35 is

E(ω) = Eoe
√

ε(ω)iωr/c (A.43)

If ω < ωp then the exponent of Equation A.43 will be imaginary making the electric field oscillatory.

This means radiation will propagate though the medium, or the material will be transparent. If

ω < ωp then the exponent will be real and negative and the electric field decay inside the material.

No radiation will be transmitted through the medium. The energy may be absorbed by the medium

or it may be reflected1.

A.1.7 Index of Refraction

The dielectric constant by itself adequately describes the optical behavior of a material, but Fresnel

equations use the complex index of refraction Ñ to describe the optical properties of the material.

The tilde denotes N is a complex number.

Ñ = n+ ik (A.44)

1The ionosphere of the earth is a plasma with a plasma frequency. The frequency of AM radio waves is less than
the plasma frequency of ionosphere, so the AM waves will bounce off the ionosphere and back to the earth. That is
why AM stations from two states away can be heard during different times of the day. The frequency of FM stations
is greater than the plasma frequency of the ionosphere. So as far as FM waves are concerned the ionosphere is a big
window and they pass though out into the depths of outer space.
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The dielectric constant also has a real and imaginary part. No tilde will be used with ε because it

is assumed the complex nature of ε is implicit.

ε = ε1 + iε2 (A.45)

Conversion between ε and Ñ is simple (see Section A.2).

Ñ 2 = ε (A.46)

ε1 = n2 − k2 (A.47)

ε2 = 2nk (A.48)
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A.2 Lorentz Oscillators

Drude theory assumes that the electrons are free to “slosh” around inside the metal like water in

a glass. But that concept is only valid for metals, and more specifically alkali metals. What if the

material is not a metal, how could the optical properties be understood? A model that works well

is to assume an electron is harmonic coupled to a fixed nucleus. The electron is considered to be

coupled to the nucleus by a spring with a spring constant of ks (different than the wavenumber k

or absorptive constant k.) There will be a natural harmonic frequency ω0 that depends on ks. A

physical interpretation of the spring is the coulombic force that binds the electron to the nucleus.

There is also a damping force, γ, that is proportional to the velocity of the electron around the

nucleus.

m
d2xs

dt2
+mγ

dxs

dt
+mω2sxs = −eEi (A.49)

where Ei is the incident electric field that is driving the oscillations. Assuming the oscillations are

small and harmonic the displacement x can be represented by

x(t) = xeiωt (A.50)

Also assume the electric field has a similar form

E(t) = E0e
iωt (A.51)

Each time derivative of x(t) will bring down an ωt making it possible to easily solve Equation A.49

for x(t).

x̃(t) =
(e)

m[(ω20 − ω2 − iγω)]
E0e

−iω] (A.52)

The tilde signifies the value is complex, which comes from the damping term.

As the electrons oscillate around the ion cores a dipole moment is created due to a displacement of

charged ion cores from the electrons.

p = qd (A.53)

where q is the amount of charge that has been separated and d is the distance between the centers

of the positive and negative charges.

The frequency that the electron rotates around the nucleus depends on the distance from the nucleus.

The distance of the electron from the nucleus is related to the energy of the electron while bound

to the nucleus. The nucleus is assumed to be fixed and motionless because of its large mass. The

spacing of the nuclei determines the density of electrons in a material.

It is assumed that each electron in an atom has a resonating frequency, ω0, that is associated with

the energy of the electron in the atom.

The interaction of light with frequency, ω, and a single electron with an oscillating frequency, ω0,

can be described by Maxwell’s equations. The displacement of the electron by the electric field

component of the light creates a dipole moment in the atom. The time-dependent dipole moment
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p̃(t) created by the movement of the electron is

p̃(t) =
(e2)/me

(ω20 − ω2 − iγω)
E0e

−iωt (A.54)

where me is the mass of an electron, e is the charge of an electron, γ is a damping factor, and E0 is

the amplitude of the light’s electric field. In a real material electrons may oscillate at one of several

different oscillating frequencies that are material specific. These specific frequencies are due to the

energy spacings within the atom. If there are N atoms per unit volume, and there is a fraction, fj ,

of the electrons with frequency ωj and damping factor γj the net polarization of the material is

P̃ =
Ne2

me

∑

j

fj
(ω2j − ω2 − iγjω)

Ẽ (A.55)

where P̃ and Ẽ are complex amplitudes. P̃ and Ẽ are related by

P̃ = ε0χeẼ (A.56)

for an isotropic material. The complex susceptibility, χe, is related to the complex permittivity, ε,

by

ε = ε0(1 + χe) (A.57)

By modelling the interaction of light with an electron in an atom as a damped harmonic oscillator,

the complex permittivity takes the form

ε = ε0



1 +
Ne2

meε0

∑

j

fj
(ω2j − ω2)− iγjω



 (A.58)

Even though ε is a complex number it is not written with a tilde because ε is explicitly complex.

Following standard convention, the complex permittivity is expressed as ε1 and ε2. They are defined

to be

ε = ε1 + iε2 = Re {ε}+ iIm {ε} (A.59)

The wave equation can still be solved with a complex ε and has a solution

Ẽ(x, t) = Ẽ0e
i(Kx−ωt) (A.60)

where K is the complex wavenumber that can be expressed as

K2 = ω2

c2



1 +
Ne2

meε0

∑

j

fj
(ω2j − ω2)− iγjω



 (A.61)

The wavenumber is often expressed in terms of the real and imaginary parts as

K = k + iα = Re {K}+ iIm {K} (A.62)
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Because K = ω
cN the complex index of refraction is defined as

N = n+ ik = Re {N}+ iIm {N} (A.63)

N can now be expressed as

N =



1 +
Ne2

meε0

∑

j

fj
(ω2j − ω2)− iγjω



 (A.64)



Appendix B

Plots of Spectral Line Radiation

The following tables show the relative intensities of spectral emissions from various gases that may be

used in the hollow cathode. Not every gas that is shown was used in this thesis, but the information

should be useful for future work. Any intensity below 150 has be excluded to avoid data overload.
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Figure B.1: Line Radiation of helium gas between 100–1300 Å taken from Reference [39].
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Figure B.2: Line Radiation of neon gas between 100–1300 Å taken from Reference [39].
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Figure B.3: Line Radiation of hydrogen gas between 100–1300 Å taken from Reference [39].
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Figure B.4: Line Radiation of argon gas between 100–1300 Å taken from Reference [39].
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Figure B.5: Line Radiation of oxygen gas between 100–1300 Å taken from Reference [39].
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Figure B.6: Line Radiation of nitrogen gas between 100–1300 Å taken from Reference [39].
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Appendix C

O-Chamber Details

C.1 LabVIEW Programs

This is the output obtained by printing all the documentation on the VI’s in LabVIEW. The following

files are documented in this Appendix:

1. VAR

(a) Combines all SubVI’s to make θ/2θ measurements while checking the source intensity

several times

2. T2T

(a) Performs a simple θ/2θ once

3. StageControlSpring

(a) Sends pulses to the NIDAQ board that move the stepper motors. It is assumed the motors

are spring loaded so there is no reason to correct for backlash.

4. CalcR

(a) Takes an array of reflectance and source measurements and calculates the reflectance

5. FindMax

(a) Measures the intensity over a range of angles or positions and returns the most intense

counts and its position

6. InferenceForRegression

(a) Calculates the statistical error of the measurements
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H i e r a r c h y  W i n d o w

Last modified on 4/23/01 at 10:52 PM

Printed on 4/23/01 at 10:52 PM

P a g e  1

Figure C.1: Hierarchy of SubVI’s for the VAR VI page 1.
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V A R . v i

D : \ L a b V i e w \ V A R . v i

Last modified on 4/23/01 at 10:13 PM

Printed on 4/23/01 at 10:54 PM

P a g e  1

List of SubVIs

F i n d M a x . v i

D : \ L a b V i e w \ F i n d M a x . v i

Write To Spreadsheet File.vi

C : \ P R O G R A M  F I L E S \ N A T I O N A L  I N S T R U M E N T S \ L A B V I E W \ v i . l i b \ U t i l i t y \ f i l e . l l b \ W r i t e  T o  S p r e a d s h e e t  

File.vi
D a t a T o A F i l e . v i

D : \ L a b V i e w \ D a t a T o A F i l e . v i

R e a d  P N G  F i l e . v i

C : \ P R O G R A M  F I L E S \ N A T I O N A L  I N S T R U M E N T S \ L A B V I E W \ v i . l i b \ p i c t u r e \ p n g . l l b \ R e a d  P N G  F i l e . v i

D r a w  F l a t t e n e d  P i x m a p . v i

C : \ P R O G R A M  F I L E S \ N A T I O N A L  I N S T R U M E N T S \ L A B V I E W \ v i . l i b \ p i c t u r e \ p i c t u r e . l l b \ D r a w  F l a t t e n e d  

Pixmap.vi

D a t a T o P N G . v i

D : \ L a b V i e w \ D a t a T o P N G . v i

stagecontrolspring.vi

D:\LabView\stagecontrolspring.vi

E m p t y  P i c t u r e

C : \ P R O G R A M  F I L E S \ N A T I O N A L  I N S T R U M E N T S \ L A B V I E W \ v i . l i b \ p i c t u r e \ p i c t u r e . l l b \ E m p t y  P i c t u r e

T 2 T & C h e c k S o u r c e . V I

D : \ L a b V i e w \ T 2 T & C h e c k S o u r c e . V I

Figure C.2: List of SubVI’s for the VAR VI page 1.
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V A R . v i

D : \ L a b V i e w \ V A R . v i

Last modified on 4/23/01 at 10:04 PM

Printed on 4/23/01 at 10:04 PM

P a g e  1

Front Panel

5 . 0 0

Start Angle

1 6 0 . 0 0

Final Angle

5 . 0 0

Step Angle

Error

0 . 5 0

Exposure

0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 00

0

Array

2 0 . 0 0

Check Source

0 . 0 0

Lateral Motor

M i n  M a x  P l o t

D : \ D a t a

File Name

e v e r y

d e g r e e s

A b o r t  R u n ?

All angles in this colum

a r e  r e f e r e n c e d  t o  d e t e c t o r

o r  t w o  t h e t a

All angles in this colum

are referenced to mirror

or theta

Currently

n o t  w o r k i n g

Figure C.3: Documentation on VAR VI page 1.
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V A R . v i

D : \ L a b V i e w \ V A R . v i

Last modified on 4/19/01 at 12:01 AM

Printed on 4/23/01 at 9:56 PM

P a g e  2

B l o c k  D i a g r a m

Error

M i n  M a x  P l o t

Array

F i l e  N a m e
P a t h

 False 

4

8 .  M o v e  t h e  

detector past 

zero ready to 

start a new 

V A R  r u n

3

F i l e  N a m e

 3 [0..3]

0 . 0 00

0

Array

-3

E x p o s u r e

0 . 2

3 0

4
Array

0 . 0 5

2 0

-0.5

2 .  R o u g h l y  

find where 

the max is.

3 .  M o v e  m o t o r  

back to the 

position of the 

brightest spot.

4. Take a careful 

m e a s u r e m e n t  o f  

z e r o

4
4 4

3 0 6 6 1 0 0 0 0 0

0

Array

5 .  R e c o r d  

the intensity 

at zero

6 .  M o v e  t h e  d e t e c t o r  b a c k  

to zero.  There is no good 

reason to do this, it is just 

nice to have everything 

where it needs to be.
1 0

7 .  M o v e  t h e  

mirror back into 

t h e  b e a m

1 0

1 .  M o v e  t h e  

mirror out of 

t h e  b e a m

4

Start Angle

8 .  M o v e  t h e  

detector out of 

the way to a 

fixed angle

Align Detector

0 . 5

E x p o s u r e

5

Lateral Motor

Lateral Motor

M i n  M a x  P l o t

 0 [0..3]

 True 

Figure C.4: Documentation on VAR VI page 2.
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V A R . v i

D : \ L a b V i e w \ V A R . v i

Last modified on 4/19/01 at 12:01 AM

Printed on 4/23/01 at 9:56 PM

P a g e  3

3

Start Angle

2 3

0 . 2

4 0

E x p o s u r e

-4

3

5

Align Mirror to zero and move detector back to zero.

3

4

8 .  M o v e  t h e  

d e t e c t o r  b a c k  

to zero ready 

to start a T2T 

s c a n .

Start Angle

 1 [0..3]

T h e t a  T w o  T h e t a  L o o p s

Array

Array

C h e c k  S o u r c e

S t e p  A n g l eFinal Angle

Start Angle

t e m p

 True 

Lateral Motor

E x p o s u r e

S t e p  A n g l e

1 0 0
Adds a little to 

all but the first.  

Better than a 

logic loop

A b o r t  R u n ?

 2 [0..3]

t e m p

 False 

Figure C.5: Documentation on VAR VI page 3.
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T 2 T . v i

D : \ L a b V i e w \ T 2 T . v i

Last modified on 4/16/01 at 1:22 PM

Printed on 4/23/01 at 10:20 PM

P a g e  1

Front Panel

0 . 0 0

Start Angle

0 . 0 0

E n d  A n g l e

0 . 0 0

Every ? Degrees

0 . 0 0

E x p o s u r e  T i m e

θ/2θ S c a n

0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0

0

0

D a t a

status

0

c o d e

s o u r c e

error in (no error)

status

0

c o d e

s o u r c e

error out

Figure C.6: Documentation on T2T VI page 1.
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T 2 T . v i

D : \ L a b V i e w \ T 2 T . v i

Last modified on 4/16/01 at 1:22 PM

Printed on 4/23/01 at 10:21 PM

P a g e  2

B l o c k  D i a g r a m

Start Angle

E n d  A n g l e

E v e r y  ?  D e g r e e s

3

E x p o s u r e  T i m e

2 0

0 . 0 5

D a t a

D a t a

-0.5

 False 

This wire will correct 

for any small error in 

the alignment.

2 1

3 0 6 6 1 0 0 0 0 0

Assume the detector and mirror are aligned and are at the starting angle.  This is very important because if the 

mirror is not aligned in the lateral direction error will be introduced into the angle of the detector and that may 

make the detector not get maximum counts.

Matt Squires 22 Feb 2001

3

0.5
0 . 0 00

0

D a t a

Rotate the mirror back a little 

because FindMax.vi will move up 

through the max and a little past.  

That is why there is a minus 1 

inside the loop when it moves the 

motors.

Clear out Data Array

2

error in (no error) error out

3
4

2

E v e r y  ?  D e g r e e s

 True 

Figure C.7: Documentation on T2T VI page 2.
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stagecontrolspring.vi

D:\LabView\stagecontrolspring.vi

Last modified on 11/29/00 at 8:33 PM

Printed on 4/23/01 at 10:17 PM

P a g e  1

This VI moves the stage that it is sent the distance inputed in the direction inputed

Front Panel

0 . 0 0

Distance (mm or degree)

C C W

C W

Choose Direction
x direction

 C h o o s e  M o t o r

x out of beam

x into beam

u p

d o w n

B l o c k  D i a g r a m

0

1

Direction

1

 0 [0..3]

D i s t a n c e  ( m m  o r  d e g r e e )

 True 

S t e p  t h e t a

4

4 4 . 5

 3 

 C h o o s e  M o t o r

C C W

 1 [0..1]

error out
error in (no error)

S t e p  X

1

8 0 . 0 0

 ..0 

1

 1 [0..3]

Figure C.8: Documentation on StageControlSpring VI page 1.
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stagecontrolspring.vi

D:\LabView\stagecontrolspring.vi

Last modified on 11/29/00 at 8:33 PM

Printed on 4/23/01 at 10:18 PM

P a g e  2

S t e p  Y

2

8 0 . 0

 1 

S t e p  Z

3

8 0 . 0

 2 

S t e p  D e t e c t o r

5

4 4 . 5

 4.. 

1

 2 [0..3]

1

 3 [0..3]

 False 

Figure C.9: Documentation on StageControlSpring VI page 2.
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stagecontrolspring.vi

D:\LabView\stagecontrolspring.vi

Last modified on 11/29/00 at 8:33 PM

Printed on 4/23/01 at 10:19 PM

P a g e  3

0 . 0 0

 True 
D i s t a n c e  ( m m  o r  d e g r e e )

 0 [0..1]

-1.00 D i s t a n c e  ( m m  o r  d e g r e e )

D i s t a n c e  ( m m  o r  d e g r e e )

C C W C C W

 False 

Figure C.10: Documentation on StageControlSpring VI page 3.
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CalculateReflectance.vi

D:\LabView\CalculateReflectance.vi

Last modified on 4/5/01 at 7:40 PM

Printed on 4/23/01 at 10:45 PM

P a g e  1

Front Panel

Calculate Reflactance

0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0

0

0

Input Data

S a m p l e

Angle
Counts T i m e

0 . 0 0

T e m p

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

0 . 0 0 0 0 . 0 0 0 0 . 0 0 00

0

Reflectance

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0

0

Source Intensities

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 00 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 00

Coefficients

0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0

0

0

Reflected Intensites

0 . 0 0

P r e v i o u s  I n d e x

0 . 0 0

F i t  M S E

1 . 0

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

9 0 . 00 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0

X Y  G r a p h

Figure C.11: Documentation on CalcR VI page 1.
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CalculateReflectance.vi

D:\LabView\CalculateReflectance.vi

Last modified on 4/5/01 at 7:40 PM

Printed on 4/23/01 at 10:47 PM

P a g e  2

B l o c k  D i a g r a m

Now find the average of the times if the time of the source is not to be included.  If the time variations of the source are going to be calculated, then 

take the data and fit the data to a line.  Even though there may be enough source intensity points to fit it to a higher order polynomial, the statistics 

that I have at this time are only for fitting data to a line.  If you know how to find the inference for Regression of a polynomial of order greater that two 

feel free to reprogram the Intereference for Regression sub-VI

Matt Squires

1 5  J a n  2 0 0 1

Source Intensities

1

2

Coefficients

F i t  M S E
2

 1 [0..2]

Figure C.12: Documentation on CalcR VI page 2.
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C a l c u l a t e R e f l e c t a n c e . v i

D : \ L a b V i e w \ C a l c u l a t e R e f l e c t a n c e . v i

L a s t  m o d i f i e d  o n  4 / 5 / 0 1  a t  7 : 4 0  P M

P r i n t e d  o n  4 / 2 3 / 0 1  a t  1 0 : 4 8  P M

P a g e  3

Find out what the source intensit ies are and then st ick them in the Source Intensit ies array.  Then 

pull the reflected intensities out of the full data set and store them in Reflected Intensities.  

I n p u t  D a t a

0

R e f l e c t a n c e

0

If the angle is 

zero ,  then save 

the intensity

Source In tens i t ies

Source In tens i t ies

Ref lec ted In tens i tes

P r e v i o u s  I n d e x

0 3
Wid th  o f  A r ray

Ref lec ted In tens i tes

T e m p

O n c e  t h e  V I  h a s  f o u n d  a  

detector angle of zero, this part 

will pick off the source intensity 

and put it in its own array.  It 

will then pick off everything 

before it up to the previous 

Source In tens i ty .   The prev ious 

index stores that info and is 

intialized to zero.

 True 

0

T e m p

P r e v i o u s  I n d e x

Because  I  don ' t  wan t  t he  i ndex  t o  be  upda ted  

before its time, put the index of the current zero in 

Temp, then put i t  in Previous Index after the frame 

i s  comp le te

0

0 . 0 00

0

Source In tens i t ies

C lea r  ou t  sou rce  and  

reflected intensities

P r e v i o u s  I n d e x

0

Ref lec ted In tens i tes

F i t  M S E

0 . 0 00

0

Coeff icients

 0 [0..2]

Do nothing i f  the detector angle is not zero

 False 

Figure C.13: Documentation on CalcR VI page 3.
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CalculateReflectance.vi

D:\LabView\CalculateReflectance.vi

Last modified on 4/5/01 at 7:40 PM

Printed on 4/23/01 at 10:48 PM

P a g e  4

Reflected Intensites

2

Coefficients

R e f l e c t a n c e
0

X Y  G r a p h

1

Source Intensities

This is where R 

is calculated     -->

0 . 0 0 4
Add a little extra 

because there is some 

additional error from the 

s o u r c e

First of all it will pick off the times that reflected intesities were measured so the source intensity is about the same time as 

the reflected intensity is measured.  That hopefully will account for variation in the source as a function of time.

All the rest of the gobledy gook is calculating the error bars.  It assumes there are enough counts to say the distribution is 

gaussian.  Then it calls the Inference for Regression sub-VI, and using the sum of squares calculates the approximate 

sigma for the data.

Matt Squires

1 5  J a n  2 0 0 1

 2 [0..2]

Figure C.14: Documentation on CalcR VI page 4.
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FindMax.vi

D : \ L a b V i e w \ F i n d M a x . v i

Last modified on 3/8/01 at 9:08 AM

Printed on 4/23/01 at 10:28 PM

P a g e  1

Front Panel

0 . 0 0

Minimum Step Size

2 0 . 0 0

Number of Steps
0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0 0 . 0 0

0 . 0 0 0 . 0 0

0

0

D a t a

0 . 0 0

Max Intensity

0 . 0 0

Position of Max

0 . 5 0

E x p o s u r e

0 . 0 0

Initial Angle

0 . 0 0

M o t o r  N u m b e r

0 . 0 0

Time of Max

Inputs

Outputs

Error

status

0

c o d e

s o u r c e

error in (no error)

status

0

c o d e

s o u r c e

error out
Motor #  Motor

0               X

1               Y

2               Z

3               Theta

4                Detector

Figure C.15: Documentation on FindMax VI page 1.
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F i n d M a x . v i

D : \ L a b V i e w \ F i n d M a x . v i

L a s t  m o d i f i e d  o n  3 / 8 / 0 1  a t  9 : 0 8  A M

P r i n t e d  o n  4 / 2 3 / 0 1  a t  1 0 : 2 8  P M

P a g e  2

B l o c k  D i a g r a m

N u m b e r  o f  S t e p s

D a t a

E x p o s u r e

D a t a

Initial Angle

M i n i m u m  S t e p  S i z e

M o t o r  N u m b e r

Don't  move the motor af ter the last  

m e a s u r e m e n t .   T h e  d i s t a n c e  m o v e d  

w i l l  then  be  #Steps  *  S tepSize

 True  

D a t a

0 . 0 00

0

C l e a r  D a t a  A r r a y

error in (no error)

 0 [0..1]

 False 

Figure C.16: Documentation on FindMax VI page 2.
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FindMax.vi

D : \ L a b V i e w \ F i n d M a x . v i

Last modified on 3/8/01 at 9:08 AM

Printed on 4/23/01 at 10:29 PM

P a g e  3

Position of Max

Max Intensity

D a t a

1

0

2

T i m e  o f  M a x

0

Error

This section will pick the max intensity from the 

array and return the time and angle of the max 

position.  It also checks to make sure the max 

intensity did not happen to be on the edge of 

the array.  If that happens the true max value 

was not found.  Only the relative max was 

found it that happens.  An error is returned if 

that happens.

Matt Squires

2 2  F e b  2 0 0 1

error out

 1 [0..1]

Figure C.17: Documentation on FindMax VI page 3.
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I n f e r e n c e F o r R e g r e s s i o n . v i

D : \ L a b V i e w \ I n f e r e n c e F o r R e g r e s s i o n . v i

L a s t  m o d i f i e d  o n  4 / 5 / 0 1  a t  6 : 2 4  P M

P r i n t e d  o n  4 / 2 3 / 0 1  a t  1 0 : 2 6  P M

P a g e  1

F r o n t  P a n e l

0 . 0 00

0

Source In tens i t ies

0 . 0 00

0

Refelcted Intensit ies

0 . 0 00

Linear Coeff icients

0 . 0 0

x bar

0 . 0 0

d e n o m i n a t o r

0 . 0 00

n u m e r a t o r 0 . 0 00

Standard  Er ro r

0 . 0 0

s

Inpu ts

In te rmed ia te  S teps

O u t p u t

B l o c k  D i a g r a m

Source  In tens i t ies

Refelcted Intensi t ies

Linear Coeff ic ients

2

2

1

x  bar

d e n o m i n a t o r

n u m e r a t o r

S t a n d a r d  E r r o r

s

This calculates the Inference for Regression for 

calculated source intensi t ies.

To be honest I  don' t  know much about i t .   I t  is a 

statisical method for calculating the stadard error 

in Y when fitting points to a line.

T h e  f o r m u l a s  m a y  b e  f o u n d  i n  m y  M a s t e r ' s  

Thesis and on the internet by looking for 

inference for regression.

I  was told by Dr.  Tur ley, who was told by a 

Statistics person to use this.  It should be coded 

correctly

M a t t  S q u i r e s

1 5  J a n u a r y  2 0 0 1

Figure C.18: Documentation on InferenceForRegression VI page 1.
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A

P
P

E
N

D
IX

C
.

O
-C

H
A

M
B

E
R

D
E

T
A

IL
S

C
.2

P
a
r
ts

L
ist

Part Company Part Number or Description Aprox. Price

rotational stepper motors EAD motors (Eastern Air Devices Inc.) LH17 85 + 15(vacuum prep)

linear stepper motors Haydon Switch and Instrument 26000 non-captive shaft 60 + 12(vacuum prep)

Stepper Drivers Haydon Switch and Instrument Spectrum Drive PN 42103 100

linear motion carriage Techno-Isel Linear Motion components linear bearing system ?

linear motion rail Techno-Isel Linear Motion components linear bearing sys series 1 double rail ?

Detector Amptek MD-501 AMPTEKTRON 1200
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C.3 CAD Drawings

These parts were drawn by Wes Lifferth.
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Channel
Name

Device
Channel
(DIO
line)

Description Device Type Device Name

Direction 0 Tells the X, Y, Z, Theta,
and Detector drivers which
way the motor should
move

Step Detec-
tor

5 Sends a clock pulse to the
detector driver to move the
detector arm

Step Theta 4 Sends a clock pulse to the
theta driver to move the
theta arm

DAQ
Virtual DIO
Channel

PCI-MIO-
16E-4

Step X 1 Sends a clock pulse to the
X driver to move the X
stage

Step Y 2 Sends a clock pulse to the
Y driver to move the Y
stage

Step Z 3 Sends a clock pulse to the
Z driver to move the Z
stage

Table C.1: Digital IO channel configuration information.

C.4 DIO Configuration

The following figures show where the configuration panel can be found.
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Figure C.23: Picture where to find National Instruments Measurements and Automation files using
Window Explorer. If the software has been reinstalled click on Add Data Input or Output.
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Figure C.24: Picture of icons involved in configuring DIO channels. This is where the information
from Table C.1 is entered.
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Figure D.1: Variable angle reflectance data and confidence intervals for graphite at 584 Å.
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Figure D.2: Variable angle reflectance data and confidence intervals for graphite at 1084 Å.
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Figure D.3: Variable angle reflectance data and confidence intervals for graphite at 1134 Å.
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Figure D.4: Variable angle reflectance data and confidence intervals for graphite at 1164 Å.
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Figure D.5: Variable angle reflectance data and confidence intervals for graphite at 1199 Å.
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Figure D.6: Variable angle reflectance data and confidence intervals for graphite at 1216 Å.
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Figure D.7: Variable angle reflectance data and confidence intervals for graphite at 1640 Å.
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D.2 Industrial Diamond
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Figure D.8: Variable angle reflectance data and confidence intervals for diamond at 584 Å.
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Figure D.9: Variable angle reflectance data and confidence intervals for diamond at 1084 Å.
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Figure D.10: Variable angle reflectance data and confidence intervals for diamond at 1134 Å.
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Figure D.11: Variable angle reflectance data and confidence intervals for diamond at 1164 Å.
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Figure D.12: Variable angle reflectance data and confidence intervals for diamond at 1199 Å.
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Figure D.13: Variable angle reflectance data and confidence intervals for diamond at 1216 Å.
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Figure D.14: Variable angle reflectance data and confidence intervals for diamond at 1640 Å.
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D.3 MATLAB Program

CountDarkSpots.m calculates the fraction of black spots from a tiff file.

% This will read a graphics file and count the number of black pixels

% It will also calculate the fraction that are black

% Matt Squires April 2001

% Open file, convert to numbers, & add 1

A = double(imread(’PieceOfDiamond.tif’))+1;

% Create dummy arrays

A2 = A(1:135,1:248);

frac(1:256) =0;

% Determine the frequency of each shade of grey

for x = 1:135,

for y = 1:248,

for t =1:256,

if (A2(x,y)<=1*t & A2(x,y)>1*(t -1))

frac(t) = frac(t) +1;

end

end

end

end

frac

% Index 1 is black pixels, compare to total number of pixels

frac(1)/(135*248)



Appendix E

Standard Operating Procedures

List of SOP’s in this Appendix.

1. How to align the interior hardware in the O-chamber

2. How to align the O-chamber with the monochromator

3. How to replace the glass to metal seal in hollow cathode
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E.1 SOP for aligning the Interior Hardware

1. Align laser with crosshairs on back of chamber

(a) Bolt laser and mount to the back of the O-chamber table if not already mounted

(b) Make sure the mirror is out of the way so there is no reflection from any mirror in the

chamber. All reflections should be off of the surface of the plexiglass

(c) Get retroreflection off to the side of the crosshairs

i. Rotate laser until it retroreflects above, below, or right on the pinhole in front of the

laser

ii. If needed, turn adjustment screw below laser until the laser reflects off the plexiglass

and into pinhole in front of the laser

(d) Center laser on crosshairs

i. Use adjustment screws on optical base to align laser with crosshairs

2. Level base with laser

(a) Turn mirror so it reflects light back into pinhole

(b) Adjust level of base from front to back

i. Turn screws in front and back of base until laser is centered on the crosshairs OR

until the edge of a crosshair splits the reflected laser beam

ii. Make sure both front and back screws are touching the floor of the O-chamber by

trying to rock the base front to back

iii. If the front and back screws are both touching the floor of the O-chamber the base

should not wobble and the reflected laser beam should not move after touching the

floor

(c) Rotate mirror 90o clockwise

(d) Move laser to the side of the chamber

i. This is only needed when leveling the base withe the laser, and does not need to be

done during a regular run, unless the level of the base is suspect

(e) Repeat steps 4.20 and 4.20

3. Center plum bob with laser

(a) Borrow a plum bob from Wes Lifferth (Make sure to take it back)

(b) Move laser to the back of the chamber and align using step 4.20

(c) Hang the plum bob from a meter stick so the laser is centered on the string

i. Hold a piece of paper in the laser after it passes through the string

ii. If the string is centered the intensity will be equal on both sides of the shadow
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4. Center base

(a) Slightly loosen interior alignment block screws at the front and back using an allen wrench

or ball driver

(b) Move the center post so it is aligned under the plum bob

i. Loosen and tighten opposite screws in the right and left interior alignment blocks to

move the center post under the plum bob

ii. The only alignment that really matters is the lateral alignment (The front to back

alignment of the center post does not matter)

iii. Fix the base into place by carefully tighten the screws in all the interior alignment

blocks until the they are tight against the O-chamber walls

5. Double check alignment and adjust detector height

(a) Move the detector so the laser is shining directly into the detector

i. This may require removing the bolts that hold the motors in place and moving them

out of the way

(b) Note the relative position of the laser and the opening of the detector

(c) Move the mirror into the laser so it is reflecting inside the chamber

(d) Swing the detector so the laser is shining into the detector

(e) The relative position of the laser and opening of the detector should be the same as step

4.20

(f) If the positions are not the same the base needs to be realigned

(g) Adjust the laser so it is centered on the opening of the detector

i. Loosen the four screws that hold the detector in place

ii. Adjust the height of the detector by turning the screw at the bottom of the detector

iii. If the detector’s height cannot be adjusted any more the leveling screws in the base

are extended too much and need to be retracted and then realigned

iv. Tighten the four screws to hold the detector in place
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E.2 SOP for aligning the O-Chamber with the monochroma-

tor

1. Position O-chamber on table

(a) Move the chamber so it is centered in the lateral alignment blocks, and parallel to the

angular alignment blocks.

2. Move table out of the way

(a) Lift the entire table using a pallet jack

(b) This may require using 4x4 beams to get the right height

(c) Make sure the table is balanced on the pallet jack

3. Align laser with monochromator

(a) Move the monochromator wavelength to zero

(b) Mount the laser with translation stage on a table

i. The table should not interfere with the position of the table

ii. The laser should go in the exit slit, because the gate value will block the entrance

slit in later steps

(c) Align the laser with the exit slits

i. The laser should be centered horizontally and vertically

(d) Align the laser with the center of the grating

i. Don’t touch, wipe, or breath on the grating

ii. Rotate and translate the laser until the laser is centered on the exit slits and hits the

center of the grating

(e) Align laser with exit slit

i. The laser should emerge from the entrance slit centered horizontally and vertically

ii. If it is not refer to the McPhereson grating instructions on how to change the align-

ment of the grating

(f) Make sure the entrance and exit slits are as small as possible to confine the beam to one

path

4. Move table into beam

(a) USE the PALLET JACK for the alignment

(b) The plexiglass with crosshairs should be in place on the rear port of the O-chamber

(c) Position the table where the nipple will not have to move much to be attached to the

monochromator
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(d) Carefully rotate and translate the pallet jack (This will also move the table and O-

chamber) until the laser retro reflects off the plexiglass back onto the laser

(e) Adjust the lateral position of the table so the laser is retroreflecting and is directly below

the center of the cross hairs

(f) GENTLY lower the table using the pallet jack

(g) The lateral and rotational alignment should still be good

(h) If the vertical alignment can be changed by turning the pads below each leg

(i) The vertical alignment is also easily performed while the table is lifted by the pallet jack

5. Fine tune the alignment

(a) Using the external lateral and rotational alignment blocks move the O-chamber on the

table until the laser is exactly centered on the crosshairs and retroreflects on itself

6. Attach the nipple to the monochromator

(a) Remove the screws that support the loose flange. Though the bellows will support the

weight of the smaller flange it is best support the loose end with your hand or something

else.

(b) Place the aluminum spacer between the monochromator and the flange with the O-ring

on the spacer facing the O-chamber.

(c) Position the bolt holes of the spacer so they match the bolt holes on the monochromator.

There are only five holes on the spacer and the monochromator where there could be six.

(d) Using a hex screw that is about 1.25 inches long stretch the bellows out a little bit until

the screw is able to fit into the flange and spacer. It may be easier to put all the screws

in place before screwing any into the monochromator.

(e) Tighten the screws down in a star pattern to make sure the flanges seat evenly. Don’t

tighten any screw all the way in one pass. Tighten each screw gradually to prevent the

flange from pressing evenly against the O-rings. This is same principle behind putting on

a car tire.

7. Bolt the laser mount to the back of the table and align the laser with the cross hair on the

back of the O-chamber
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E.3 SOP for Replacing Glass to Metal Seal

1. Vent hollow cathode

(a) Close entrance slit flap valve

(b) Using dry argon as a backfill open valve on the side of the entrance slit

2. Remove vacuum fittings from metal half of glass to metal seal

(a) Loosen compression fitting

(b) Hold the metal tube to support any tension

(c) Gently pull compression fitting off metal tube

3. Free up cooling tubes

(a) Loosen and remove the two external fittings that route the cooling water

(b) One hose is connected to the in coming water

(c) One hose goes from the hollow cathode back to the hollow cathode

(d) Don’t worry about the internal fittings, but the tubes must be free to move around

4. Hold Tubes out straight

5. Slide Plexiglass guard down tubes

(a) Be careful not to bend the interior connections to the hose. This will create water leaks

6. Loosen internal compression fitting

(a) Old glass to metal seal may be removed by gently pulling

7. Install glass to metal seal

(a) Gently push the glass part of the glass to metal seal into the compression fitting

(b) The O-ring does not need grease

(c) Don’t force the tube

8. Reverse steps to reinstall Plexiglass guard
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